Green Synthesis of Mediated Ag/MgO Nanohydroxyapatite from Crayfish Using Orange Peel Extract (Citrus aurantium delcis)for BiomaterialsApplications

Authors

  • Adeyinka Ademilua Department of Chemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria Author

DOI:

https://doi.org/10.70454/IJMRE.2025.50402

Keywords:

Hydroxylapatite, Crayfish Shell, Biomaterials, Nanoparticles, Tissue Engineering, Osseointegration

Abstract

Conversion of waste such as crayfish shell to resourceful biomaterial like Hydroxylapatite is a led-light to the realization of United Nation vision 2030.Waste crayfish shell are being generated in tons of million across the globe annually thus constituting environmental pollution, while the demand for the synthesis of pure and biologically active materials is on the increase.This present work is aimed at investigating the facile synthesis of crayfish waste derived hydroxyapatite (CFSHAP) and substituent synthesis of its orange peel extract mediated Ag/MgOnHAP nanocomposite, as a potential biomaterial in bone tissue engineering application. The phase purity, composition, size, functional groups and surface morphology of the apatite were elucidated using spectroscopic (X-ray Diffraction (XRD); FourierTransform Infrared Spectroscopy (FR-IR) and Scanning Electron Microscopy). The results SEM showed that Ag/MgO- CFSHAP nanoparticles have round morphologies and the SEM-EDS revealed the characteristic Ag, Mg, Ca/P and O composition, FT-IR analysis confirmed relevant hydroxylapatite functional groups like carbonate, phosphate and hydroxyl groups while XRD analysis revealed a well crystalline monophasic HAp powder comparabie to the MAP reference model (JCPDF no. 00-064-0738). The 1000°c calcined Ag/MgO-CFSHAP also displayed stable phase stability which could lead to increased densification and porosity.The use of Ag will introduce antibacterial properties, while MgO will introduce osseointergration into the HAp

References

[1] Adak, M.D., Purohit, K.M. Synthesis of nano-crystalline hydroxyapatite from dead snail shells for biological implantation, Trends Biomater. Artif. Organs 25(2011) 101–106.

[2] Agarwal, H.; Kumar, S. V.; Rajeshkumar, S. A Review on Green Synthesis of Zinc Oxide Nanoparticles–an Eco-Friendly Approach. Res. Eff. Tech. 2017, 3, 406–413. DOI: 10.1016/j.reffit.2017.03.002.

[3] Alorku, K.; Manoj, M.; Yuan, A. (2020). A plant-mediated synthesis of nanostructurehydroxylapatite for biomedical applications; a review. RSC Advances, 10(67), 40923-40939

[4] Amanulla, A.M and Sundaram, R. “Green synthesis ofTiO2 nanoparticles using orange peel extract for antibacterial,cytotoxicity and humidity sensor applications,” MaterialsToday: Proceedings, vol. 8, pp. 323–331, 2019.

[5] Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D. M.; da Silva Crespo, J. Green Synthesis of Zinc Oxide Nanoparticles: A Review of the Synthesis Methodology and Mechanism of Formation. Sustain. Chem. Pharm. 2020, 15, 100223. DOI: 10.1016/j.scp.2020.100223.

[6] Bin, M.M., Pinky, N.S., Chowdhury, F., Md Sahadat, H., Mahmud, M., Md Saiful, Q., Jahan, S.A., Ahmed, A. Environmental remediation by hydroxyapatite: solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye, J. Saudi Chem. Soc. 27 (2023) 101690.

[7] Ca˜non-Davila, D.F., Castillo-Paz, A.M., Londo˜no-Restrepo, S.M., Pfeiffer, H., Ramirez-Bon, R., Rodriguez-Garcia, M.E. Study of the coalescence phenomena in biogenic nano-hydroxyapatite produced by controlled calcination processes at low temperature, Ceram. Int. 49 (2023) 17524–17533.

[8] Dennymol, P.V., Rani, J. Morphological diversity in nanohydroxyapatite synthesized from waste egg shell: verification and optimization of various synthesis parameters, Intern. J. Sc. & Techn. 2 (2014) 179–185.

[9] Doan, P.M., Ngoc, D.T., Ange, N., Patrick, S. Novel one-step synthesis and characterization of bone-like carbonated apatite from calcium carbonate, Mater. Res. Bull. 51 (2014) 236–243.

[10] Elshama, S. S.; Abdallah, M. E.; Abdel-Karim, R. Zinc Oxide Nanoparticles: Therapeutic Benefits and Toxicological Hazards. TONMJ. 2018, 5, 16–22. DOI: 10.2174/1875933501805010016.

[11] Erdogan, O.; Abbak, M.; Demirbolat, G. M.; Birtekocak, F.; Aksel, M.; Pasa, S.; Cevik, O. Green Synthesis of Silver Nanoparticles via Cynara Scolymus Leaf Extracts: The Characterization, Anticancer Potential with Photodynamic Therapy in MCF7 Cells. PLoS ONE 2019, 14, e0216496. DOI: 10.1371/journal.pone.0216496.

[12] Ganaie, S. U.; Rajalakshmi, R.; Abbasi, T.; Abbasi, S. Green Synthesis of Silver Nanoparticles by Coral Vine and Assessment of Their Properties. Bioinspired Biomim. Nanobiomater. 2019, 8, 115–129. DOI: 10.1680/jbibn.18.00019

[13] Guerrero, C.L., Garza-Cervantes, J., Caballero-Hern´andez, D., Gonz´alez-L´opez, R., Sepúlveda-Guzm´an, R., Cantú-C´ardenas, E. Synthesis and characterization of calcium hydroxide obtained from agave bagasse and investigation of its antibacterial activity, Rev. Int. Contam. Ambient. 33 (2017) 347–353, https://doi.org/10.20937/rica.2017.33.02.15.

[14] Habeeb, A.M., Salih, N.A. Synthesis of hydroxyapatite from egg shell bio- waste for use in functionally graded NiTi/HA bone implants, Ann. Chimie Sci. Mat´eriaux 48 (2024) 57–62.

[15] Hamidi, A., Salimi, M., Yusoff, A. Synthesis and Characterization of Eggshell-Derived Hydroxyapatite via Mechanochemical Method: A Comparative Study, AIP Conference Proceeding, 2017, https://doi.org/10.1063/1.4981867.

[16] Hassan, M.N., Mahmoud, M.N., El-Fattah, A.A., Kandil, S. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes, Ceram. Int. 42 (2016) 3725-3744. N. Iqbal, M.R.A. Kadir, N.H.B. Mahmood, M.F.M. Yusoff, J.A. Siddique, N. Salim, G.R.

[17] Hussain, I.; Singh, N.; Singh, A.; Singh, H.; Singh, S. Green Synthesis of Nanoparticles and Its Potential Application. Biotechnol. Lett. 2016, 38, 545–560. DOI: 10.1007/s10529-015-2026-7.

[18] Jaswal, A., Samir, S., Manna, A. Synthesis of nanocrystalline hydroxyapatite biomaterial from waste eggshells by precipitation method, Trans. Indian Inst. Met. 76 (2023) 2221–2230, https://doi.org/10.1007/s12666-023-02937-x.

[19] Ibraheem, S. A., Audu, E. A., Jaafar, M., Atabat, J. A., et al. Novel pectin from Parkia biglobosa pulp mediated green route synthesis of hydroxyapatite nanoparticles. Surfaces and Interfaces, 17, 100360 (2019). DOI: 10.1016/j.surfin.2019.100360

[20] Kumar, H., Bhardwaj, K., Dhanjal D.S. “Fruit extractmediated green synthesis of metallic nanoparticles: A newavenue in pomology applications, ”International Journal ofMolecular Sciences, vol. 21, no. 22, p. 8458, 2020.

[21] Lastra, G.; Luque, P. A.; Quevedo-Lopez, M. A.; Olivas, A. Electrical Properties of p-Type ZnTe Thin Films by Immersion in Cu Solution. Mater. Lett. 2014, 126, 271–273. DOI: 10.1016/j.

[22] Leyla, K., Salahi, E., Mobasherpour, I., Rajabi, A., Javaheri, M. Characterization of nano-hydroxyapatite synthesized from eggshells for absorption of heavy metals, Synthesis and Sintering 3 (2023) 241–247, https://doi.org/10.53063/synsint.2023.34190.

[23] Li, M., Xiong, P., Yan, F., Li, S., Ren, C., Yin, Z., Li, A., Li, H., Ji, Y. Zheng, Y. Cheng, An overview of graphene-based hydroxyapatite composites for orthopedic applications, Bioactive Mater 3 (2018) 1–18, https://doi.org/10.1016/j.bioactmat.2018.01.001matlet.2014.04.058.

[24] Muthu, D., Kumar, G.S., Kattimani, V.S., Viswabaskaran, V., Girija, E.K. Optimization of a lab scale and pilot scale conversion of eggshell biowaste into hydroxyapatite using microwave reactor, Ceram. Int. 46 (2020) 25024–25034.

[25] Ofudje, E.A., Adedapo, A.E., Oladeji, O.B., Sodiya, E.F., Ibadin, F.H., Zhang, D. Nano-rod hydroxyapatite for the uptake of nickel ions: effect of sintering behavior on adsorption parameters, J. Environ. Chem. Eng. 9 (2021) 105931, https://doi.org/10.1016/j.jece.2021.105931.

[26] Oladoyinbo, F. O., Adekola, A. H., Ofudje, E. A., Al‑Ahmary, K. M., Al‑Mhyawi, S. R., Alshdoukhi, I. F., Alrahili, M. R., & Alsaiari, A. A. (2024). Eggshell Derived Scaffold of Hydroxyapatite–Ammonium Bicarbonate Nano‑Composite: Bioactivity and Cytotoxicity Studies. Heliyon, 10(17), e36493. https://doi.org/10.1016/j.heliyon.2024.e36493

[27] Osuchukwu, O.A., Salihi, A., Abdullahi, I., Etinosa, P.O., Obada, D.O. A comparative study of the mechanical properties of sol-gel derived hydroxyapatite produced from a novel mixture of two natural biowastes for biomedical applications, Mat. Chem. and Phy 297 (2023) 127434, https://doi.org/10.1016/j.matchemphys.2023.127434.

[28] Ozgur, U.; Avrutin, V.; Morkoc¸, H. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In Molecular Beam Epitaxy, Elsevier: Massachusetts, 2018; pp. 343–375.

[29] Poinern, G. E. J.; Brundavanam, R. K.; Thi Le, X.; Djordjevic, S.; Prokic, M.; Fawcett, D. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. International Journal of Nanomedicine 6, 2083–2095 (2011)

[30] Ramirez-Leal, R. Microsc. Microanal. 15 (Suppl. 2) (2009) 1300-1301.

[31] Sandile, M.C., Onwubu, S.C., Mokhothu, T.H., Mdluli, P.S., Mishra, A.K. Comparative assessment of the remineralization characteristics of nano-hydroxyapatite extracted from fish scales and eggshells, J. Appl. Biomater. & FuncT. Mat. 21 (2023) 22808000231180390.

[32] Shi, D., Tong, H., Lv, M., Luo, D., Wang, P., Xu, X., Han, Z. Optimization of hydrothermal synthesis of hydroxyapatite from chicken eggshell waste for effective adsorption of aqueous Pb(II), Environ. Sci. Pollut. Res. 28 (2021) 58189–58205.

[33] Shih-Ching, W., Hsueh-Chuan, H., Shih-Kuang, H., Ya-Chu, C., Wen-Fu, H. Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment, J. Asian Ceram. Soc. 4 (2016) 85–90.

[34] Singh, A.; Singh, N.; Afzal, S.; Singh, T.; Hussain, I. Zinc Oxide Nanoparticles: A Review of Their Biological Synthesis, Antimicrobial Activity, Uptake, Translocation and Biotransformation in Plants. J. Mater. Sci. 2018, 53, 185–201. DOI: 10.1007/s10853-017-1544-1.

[35] Sultana, K.; Ahmad, B.; Rauf, A.; Huang, L.; Ramadan, M. Synthesis, Characterization and Pharmacological Activities of Silver Nanoparticles Using Bistorta affinis and Malcolmia cabulica Extracts. Bioinspired Biomim. Nanobiomater. 2020, 9, 7–15. DOI: 10.1680/jbibn.18.00012.

[36] Sushma, N. J.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Raju, B. D. P.; Mallikarjuna, K.; Kim, H. S. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea characterization and in vitro antioxidant studies. Applied Nanoscience 6, 437–444 (2016). DOI: 10.1007/s13204-015-0455-1

[37] Tang, Y., Zhang, Y., Wei, Q., Tang, X., Zhuang, W. Biocompatible chitosan–collagen–hydroxyapatite anofibers coated with platelet-rich plasma for regenerative engineering of the rotator cuff of the shoulder, RSC Adv. 9 (2019) 27013–27020, https://doi.org/10.1039/c9ra03972d.

[38] Toibah, A.R., Misran, F., Shaaban, A., Mustafa, Z. Effect of pH condition during hydrothermal synthesis on the properties of hydroxyapatite from eggshell waste, J. Mech. Eng. Sci. 13 (2019) 4958–4969, https://doi.org/10.15282/jmes.13.2.2019.14.0411.

[39] Wu, S.C., Tsou, H.C., Hsu, H.K Hsu, S.K., Liou, S.P., Ho, W.F. A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite, Ceram. Int. 39 (2013) 8183–8188.

[40] Zubieta-Otero, L.F., Londo˜no-Restrepo, S.M., Lopez-Chavez, G., Hernandez-Becerra, E., Rodriguez-Garcia, M.E. Comparative study of physicochemical properties of bio-hydroxyapatite with commercial samples, Mater. Chem. Phys. 259 (2021) 124201.

Downloads

Published

2025-12-30

Issue

Section

Articles

How to Cite

Green Synthesis of Mediated Ag/MgO Nanohydroxyapatite from Crayfish Using Orange Peel Extract (Citrus aurantium delcis)for BiomaterialsApplications. (2025). International Journal of Multidisciplinary Research and Explorer, 5(4), 12-24. https://doi.org/10.70454/IJMRE.2025.50402