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Abstract-Air quality prediction remains a critical challenge due to the complex spatiotemporal 

dependencies inherent in pollutant data. We propose a transformer-based encoder-decoder 

model to address this challenge, focusing on accurate and robust air quality index (AQI) 

forecasting. The proposed method processes historical pollutant measurements, including 

PM2.5, PM10, and NO2, through a multi-head self-attention mechanism to capture long-range 

dependencies and nonlinear interactions. The model employs a sliding window approach to 

generate sequential input-output pairs, which are then normalized and fed into stacked 

transformer encoders for feature extraction. A global average pooling layer condenses the 

temporal information into a fixed-length representation, enabling precise AQI prediction 

through a dense output layer. The architecture incorporates residual connections and layer 

normalization to stabilize training, while dropout regularization mitigates overfitting. 

Experiments on the Delhi air quality dataset demonstrate the model’s effectiveness, achieving 

competitive performance in terms of mean squared error and mean absolute error. Furthermore, 

the transformer’s ability to model intricate temporal patterns without recurrent structures offers 

computational advantages over traditional sequence models. The results highlight the potential 

of attention-based architectures for environmental monitoring tasks, particularly in scenarios 

where interpretability and scalability are paramount. This work contributes to the growing body 

of research on deep learning for air quality prediction, providing a framework that balances 

accuracy, efficiency, and generalizability. 
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1. Introduction 

Air quality monitoring and prediction have become increasingly important in urban 

environments due to their direct impact on public health and environmental sustainability. 

Traditional approaches to air quality prediction rely on statistical models such as autoregressive 

integrated moving average (ARIMA) and machine learning techniques like support vector 

machines (SVM). While these methods have shown reasonable performance, they often struggle 

to capture the complex, nonlinear relationships and long-range dependencies present in air 

quality data. Recent advances in deep learning, particularly recurrent neural networks (RNNs) 

and their variants such as long short-term memory (LSTM)  and gated recurrent unit (GRU) have 

improved prediction accuracy by modeling sequential dependencies more effectively. However, 

these models still face limitations in handling very long sequences and parallelizing 

computations. 

The transformer architecture, originally introduced for natural language processing tasks has 

emerged as a powerful alternative for sequential data modeling. Its self-attention mechanism 

enables the direct capture of dependencies across all time steps, regardless of their distance in the 

sequence. This property makes transformers particularly suitable for air quality prediction, where 

pollutants often exhibit complex interactions over extended periods. Recent studies have 

explored transformer-based models for air quality monitoring, demonstrating their potential in 

capturing spatiotemporal patterns However, most existing approaches focus on single-pollutant 

prediction or fail to fully exploit the transformer’s ability to model multivariate time-series data. 

In this paper, we propose a stacked transformer encoder framework for air quality index (AQI) 

prediction. The key innovation lies in the model’s ability to simultaneously process multiple 

pollutant measurements and their temporal interactions through a hierarchical attention 

mechanism. Unlike previous transformer-based approaches that rely on encoder-decoder 

architectures our method simplifies the design by using only the encoder component, which 

reduces computational overhead while maintaining prediction accuracy. The model incorporates 

several enhancements, including adaptive input normalization, residual connections, and a 

sliding window strategy for sequence generation. These modifications address common 

challenges in air quality forecasting, such as data sparsity, non-stationarity, and the need for real-

time processing. 

The proposed method offers three main contributions. First, it introduces a novel application of 

transformer encoders for multivariate air quality prediction, demonstrating their effectiveness in 

capturing both short-term and long-term dependencies among pollutants. Second, the model 

employs a streamlined architecture that eliminates the need for a decoder, making it more 

efficient for real-world deployment. Third, extensive experiments on the Delhi air quality dataset 

show that our approach outperforms traditional methods and achieves competitive results 

compared to state-of-the-art deep learning models. The success of this work suggests that 

transformer-based architectures can play a significant role in advancing air quality monitoring 

systems, particularly in highly polluted urban areas. 

The remainder of this paper is organized as follows: Section 2 reviews related work in air quality 

prediction and transformer-based time-series analysis. Section 3 provides background on 
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transformer models and their adaptation to sequential data. Section 4 details the proposed stacked 

transformer encoder framework for AQI forecasting. Section 5 presents experimental results and 

comparisons with baseline methods. Section 6 discusses the implications of our findings and 

potential directions for future research. Finally, Section 7 concludes the paper. 

2. Related Work 

Air quality prediction has evolved significantly with advancements in machine learning and deep 

learning. Early approaches primarily relied on statistical time-series models, where 

autoregressive methods like ARIM dominated due to their interpretability and simplicity. 

However, these models often failed to capture nonlinear relationships and complex interactions 

between multiple pollutants. The introduction of machine learning techniques, particularly 

support vector regression (SVR)  and random forests  improved prediction accuracy by handling 

nonlinear patterns more effectively. Nevertheless, these methods still struggled with temporal 

dependencies spanning long periods, a critical aspect of air quality dynamics. 

The advent of deep learning brought substantial improvements through recurrent neural networks 

(RNNs) and their variants. Long short-term memory (LSTM) networks became particularly 

popular for air quality forecasting due to their ability to learn long-range dependencies. 

Subsequent enhancements, such as bidirectional LSTM (BiLSTM)  and convolutional LSTM 

(ConvLSTM)  further improved performance by incorporating both past and future context or 

spatial information, respectively. For instance, demonstrated how ConvLSTM could capture 

spatiotemporal patterns in pollutant data. However, these models remained computationally 

expensive and challenging to parallelize, limiting their scalability for real-time applications. 

Transformers revolutionized sequence modeling by introducing self-attention mechanisms that 

directly capture relationships between all elements in a sequence, regardless of their distance. 

This architecture, initially developed for natural language processing , has been successfully 

adapted to time-series forecasting tasks. In air quality prediction, transformer-based models have 

shown promise in handling multivariate time-series data. For example,  proposed a bidirectional 

encoder for NO2 prediction, while  developed a decoder-only architecture for particulate matter 

forecasting. These approaches demonstrated superior performance compared to traditional 

RNNs, particularly in capturing long-term dependencies. 

Recent work has explored hybrid architectures combining transformers with other neural 

network components. introduced an ensemble model integrating transformers with CNNs, 

achieving robust performance on Delhi’s air quality data. Similarly,  combined empirical mode 

decomposition with transformer-BiLSTM for short-term predictions. These hybrid models often 

outperform pure transformer architectures but at the cost of increased complexity. Another line 

of research focuses on pretrained transformers for air quality prediction, as seen in  which 

leverages transfer learning to improve generalization. 

Despite these advancements, existing transformer-based approaches for air quality prediction 

often employ complex encoder-decoder structures  or focus on single-pollutant forecasting  

Many also neglect the computational efficiency required for real-world deployment. Our 

proposed method addresses these limitations by using a simplified encoder-only architecture that 

maintains high accuracy while reducing computational overhead. The model’s design 
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specifically targets multivariate AQI prediction, capturing interactions between multiple 

pollutants through hierarchical attention mechanisms. This approach differs from previous work 

by eliminating the decoder component entirely, instead using global average pooling to condense 

temporal information—a strategy that has not been extensively explored in air quality 

forecasting. 

Compared to existing methods, our model offers several advantages. First, it simplifies the 

transformer architecture while maintaining competitive performance, making it more suitable for 

practical applications. Second, the focus on multivariate AQI prediction rather than single 

pollutants provides a more comprehensive assessment of air quality. Third, the use of global 

average pooling enhances computational efficiency without sacrificing predictive accuracy. 

These innovations position our approach as a viable alternative to both traditional deep learning 

models and more complex transformer-based architectures for air quality monitoring. 

3. Background on Transformer Models for Sequential Data 

The transformer architecture has fundamentally changed how sequential data is processed in 

machine learning. Originally developed for natural language processing tasks  its core innovation 

lies in the self-attention mechanism, which allows the model to weigh the importance of different 

elements in a sequence dynamically. Unlike recurrent architectures that process data 

sequentially, transformers can attend to all positions in the input simultaneously, making them 

particularly suitable for parallel computation and long-range dependency modeling. 

3.1 Self-Attention Mechanism 

At the heart of the transformer lies the scaled dot-product attention, which computes a weighted 

sum of values based on the compatibility between queries and keys. Given input sequences of 

length  and dimension , the attention operation can be expressed as: 

 

where , , and  represent queries, keys, and values respectively, all learned through linear 

transformations of the input. The scaling factor  prevents the dot products from growing too 

large in magnitude, which would push the softmax function into regions with extremely small 

gradients Multi-head attention extends this concept by performing the operation in parallel over 

 different learned linear projections, allowing the model to jointly attend to information from 

different representation subspaces: 

 

where each head computes attention independently. This mechanism enables the model to 

capture diverse patterns and relationships within the input sequence. 
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Since transformers lack recurrent connections or convolutional operations, they require explicit 

positional information to maintain awareness of the order in the sequence. Positional encodings 

are added to the input embeddings, typically using sinusoidal functions of varying frequencies: 

 

 

where  is the position and  is the dimension. This approach allows the model to learn to 

attend by relative positions, as any linear transformation of a sinusoidal function is itself a 

sinusoidal function of the same frequency Alternative approaches have explored learned 

positional embeddings  but the sinusoidal variant remains widely used due to its ability to 

generalize to sequences longer than those encountered during training. 

3.2 Transformer Encoder Architecture 

The standard transformer encoder consists of multiple identical layers, each containing two main 

sub-layers: a multi-head self-attention mechanism and a position-wise feed-forward network. 

Residual connections  and layer normalization  are applied around each sub-layer: 

 

The feed-forward network typically consists of two linear transformations with a ReLU 

activation in between: 

 

This architecture has proven remarkably effective for various sequential data tasks beyond 

natural language processing, including time-series forecasting and audio processing The 

encoder’s ability to model arbitrary dependencies across the entire input sequence makes it 

particularly suitable for air quality prediction, where pollutants may influence each other over 

varying time lags. 

3.3 Adaptations for Time-Series Data 

When applying transformers to time-series forecasting, several modifications are commonly 

employed. The input representation often includes both temporal embeddings (hour of day, day 

of week) and measurement values  The attention mechanism may be adapted to focus on local 

patterns through windowing  or sparse attention patterns  For multivariate time-series like air 

quality data, the model must handle both temporal and cross-variable dependencies, which can 

be achieved through separate attention heads or modified attention computations . These 

adaptations preserve the transformer’s strengths while addressing the unique characteristics of 

environmental seinsor data. 
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4. Stacked Transformer Encoder for AQI Forecasting 

The proposed architecture employs a stacked transformer encoder framework specifically 

designed for multivariate air quality time-series forecasting. As shown in Figure 1, the model 

processes sequential pollutant measurements through multiple transformer encoder layers, 

followed by global average pooling and dense output layers. This design captures both short-

term fluctuations and long-term trends in air quality data while maintaining computational 

efficiency. 

 

Figure 1. Architecture of Transformer-based AQI prediction model 

4.1 Stacked Transformer Encoder Architecture Design 

The proposed architecture consists of  identical transformer encoder layers stacked 

sequentially, each processing the input through multi-head self-attention and position-wise feed-

forward networks. For an input sequence  where  represents the sequence length (48 

hours) and  denotes the feature dimension (number of pollutants), each encoder layer 

transforms the input as follows: 
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Here,  indexes the encoder layer ( ), with  as the initial input. The multi-head 

attention mechanism employs  parallel attention heads, each computing scaled dot-product 

attention as defined in Equation 1. The feed-forward network (Equation 6) uses an intermediate 

dimension  to enable nonlinear transformations of the attention outputs. 

The model processes six key pollutants (PM2.5, PM10, NO2, SO2, CO, O3) along with 

meteorological features (temperature, humidity, wind speed), resulting in  input 

dimensions. Each encoder layer maintains this dimensionality through linear projections, 

allowing the stacked architecture to progressively refine feature representations while preserving 

the original input structure. The attention mechanism automatically learns cross-pollutant 

interactions through the query-key-value transformations, where the attention weights  

between time steps  and  indicate the influence of pollutant  on : 

 

This formulation enables the model to capture both intra-pollutant temporal patterns (diagonal 

attention) and inter-pollutant relationships (off-diagonal attention) simultaneously. The stacked 

design amplifies this capability by allowing lower layers to focus on local patterns while higher 

layers integrate information across longer temporal ranges. 

4.2 Feature and Target Normalization Process 

The normalization process addresses the varying scales and distributions of different pollutants 

and the target AQI values. Let  represent the input sequence of pollutant 

measurements, where  denotes the value of the -th pollutant at time . Each feature 

dimension is normalized independently using a MinMaxScaler: 

 

where  represents all observations of the -th pollutant. The target AQI values  undergo 

separate normalization to prevent information leakage: 
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This dual normalization strategy ensures that the model learns relationships between relative 

pollutant concentrations rather than absolute values, improving generalization across different 

measurement scales. The inverse transformation is applied to model predictions during 

evaluation: 

 

4.3 Sequence Processing with Sliding Window and Global Average Pooling 

The model processes air quality data through a sliding window approach that generates input-

output pairs from the time series. Given a sequence of normalized pollutant measurements 

 where  is the total length of the time series, we define a window size  hours 

and stride  hour. For each time step , the input sequence  consists of 

measurements from  to , while the target  corresponds to the AQI at time . This 

creates  training samples that capture temporal patterns at different positions in the time 

series. 

The transformer encoder processes each window  through  layers of multi-head attention and 

feed-forward networks, producing an encoded sequence . To reduce the variable-

length temporal sequence to a fixed-size representation, we apply global average pooling along 

the time dimension: 

 

where  denotes the -th time step in the encoded sequence for window . The pooled vector 

 captures the essential temporal patterns while maintaining the original feature 

dimensionality. This approach differs from traditional methods that either use the last time step’s 

hidden state or flatten the entire sequence, as it preserves information across all time steps while 

reducing dimensionality. 

The pooled representation is then passed through a dense output layer with linear activation to 

produce the final prediction: 

 

where  and  are learnable parameters. The sliding window mechanism ensures 

that the model can make predictions at every time step while maintaining temporal continuity in 
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the input sequences. The global average pooling operation provides translation invariance to 

temporal shifts, making the model robust to slight variations in the timing of pollution patterns. 

4.4 Model Stabilization with Residual Connections and Layer Normalization 

The transformer architecture incorporates residual connections and layer normalization to 

facilitate stable gradient flow during training. For each encoder layer , the input  first 

undergoes multi-head self-attention, producing intermediate representations . The residual 

connection adds the original input to this transformed output: 

 

Layer normalization is then applied to the combined output: 

 

where the normalization operation standardizes the activations across the feature dimension: 

 

Here,  and  represent the mean and standard deviation of the activations, while  and  are 

learnable scaling and shifting parameters. This normalization scheme differs from batch 

normalization by operating on individual samples rather than across batches, making it 

particularly suitable for variable-length sequences. 

The same residual and normalization pattern repeats for the position-wise feed-forward network: 

 

 

The residual connections create direct pathways for gradient propagation through the network 

depth, mitigating the vanishing gradient problem common in deep architectures. Layer 

normalization stabilizes the activation distributions across layers, enabling more consistent 

learning dynamics. This combination allows the model to effectively train with multiple stacked 

encoder layers (typically  in our implementation), where each layer can refine the 

representations while maintaining stable gradient magnitudes. 

The attention mechanism itself benefits from these stabilization techniques. The query-key dot 

products in Equation 9 can produce large magnitude values that push the softmax into saturation 

regions. Layer normalization applied to the input projections helps maintain reasonable value 
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ranges, while the residual connections preserve original information even when attention weights 

become extreme. This becomes particularly important for air quality data, where sudden 

pollution spikes or measurement artifacts can create unusual attention patterns. 

4.5 Model Training with Adam Optimizer and Dropout 

The model parameters are optimized using the Adam optimizer with a learning rate of 0.0003, 

which adapts the parameter updates based on estimates of first and second moments of the 

gradients. The update rule for parameter  at time step  is given by: 

 

where  and  are bias-corrected estimates of the first and second moments of the gradients 

respectively,  is the learning rate, and  prevents division by zero. The moment 

estimates are computed as: 

 

 

with  and  controlling the exponential decay rates. The low learning rate 

helps prevent overshooting in the high-dimensional parameter space of the transformer model, 

while the adaptive moment estimation allows for efficient traversal of flat regions in the loss 

landscape. 

To prevent overfitting, dropout regularization is applied to both the attention weights and feed-

forward network activations. For the multi-head attention mechanism, dropout is applied to the 

softmax output: 

 

with a dropout rate of 0.1. The feed-forward network similarly applies dropout after the ReLU 

activation: 
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using a slightly higher dropout rate of 0.2. These dropout rates were determined through 

empirical validation on a held-out development set, balancing regularization strength with model 

capacity. 

The training objective minimizes the mean squared error (MSE) between predicted and actual 

AQI values: 

 

where  is the batch size (32 in our implementation). MSE was chosen over alternatives like 

mean absolute error (MAE) because it more heavily penalizes large prediction errors, which is 

particularly important for air quality applications where extreme values have significant health 

implications. The model is trained for 100 epochs with early stopping if the validation loss does 

not improve for 10 consecutive epochs. 

Gradient clipping with a maximum norm of 1.0 is applied during training to prevent exploding 

gradients, which can occur in deep transformer architectures. The training process uses a 

warmup period for the learning rate, linearly increasing it from 0 to the target value over the first 

10% of training steps. This warmup helps stabilize the initial training phase when the model 

parameters are most sensitive to large updates. 

The complete training procedure processes batches of windowed sequences through the stacked 

encoder layers, computes the loss, and backpropagates gradients through all components of the 

architecture. The combination of Adam optimization, dropout regularization, and gradient 

clipping ensures stable training while maintaining the model’s ability to learn complex temporal 

patterns in the air quality data. The training time for the full model on a single GPU averages 

approximately 2 hours for the complete dataset, with inference time per sample under 10 

milliseconds, making it suitable for real-time applications. 

5. Experiments 

5.1 Experimental Setup 

Dataset and Preprocessing: The experiments utilize the Delhi air quality dataset 

containing hourly measurements of six key pollutants (PM2.5, PM10, NO2, SO2, CO, O3) 

along with meteorological data (temperature, humidity, wind speed). Following the 

methodology in we process the raw data by: 

1. Converting timestamps to datetime objects 

2. Sorting chronologically by city and time 

3. Removing records with missing AQI values 

4. Forward-filling remaining missing values 

5. Applying MinMax normalization (Equations 10-11) with separate scalers for features 

(pollutants) and targets (AQI) 
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Model Configuration: The proposed stacked transformer encoder employs: 

 6 encoder layers with 8 attention heads each 

 Hidden dimension  

 Feed-forward dimension  

 Dropout rates of 0.1 (attention) and 0.2 (FFN) 

 Adam optimizer ( , , ) 

 Batch size 32 with gradient clipping at 1.0 

Training Protocol: The dataset is split into training (80%) and test (20%) sets without 

shuffling to preserve temporal order. A 10% validation split monitors early stopping 

(patience=10 epochs). The sliding window uses  hours history to predict next-hour AQI. 

Evaluation Metrics: We assess performance using: 

 Regression: MSE, MAE, R² 

 Classification: Accuracy, Precision, Recall, F1 (after binning AQI into 

Good/Moderate/Severe) 

 Statistical tests: Shapiro-Wilk and Kolmogorov-Smirnov for residual analysis 

5.2 Quantitative Results 

Table 1 presents the model’s performance across regression and classification tasks: 

Table 1. Performance metrics on test set 

Metric Value 

MSE 0.0030 

MAE 0.042 

R² 0.91 

Accuracy 91.4% 

Precision (Moderate/Severe) 0.90/0.93 

Recall (Moderate/Severe) 0.91/0.92 

F1 (Macro) 0.61 

F1 (Weighted) 0.91 

The high R² value (0.91) indicates the model explains 91% of AQI variance, while the low MAE 

(0.042) suggests average prediction errors within 4.2% of the normalized scale. Classification 

performance shows strong results for Moderate and Severe categories (F1 > 0.9), though the 

model fails to predict the underrepresented Good class (9 samples only). 
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5.3 Residual Analysis 

Figure 2 displays the residual distribution, revealing systematic deviations from normality 

(Shapiro-Wilk p < 0.001), particularly for extreme AQI values. This suggests the model struggles 

with rare pollution spikes, a common challenge in environmental forecasting [28]. 

 

Figure 2. Histogram of prediction residuals with fitted normal distribution (μ=-0.01, σ=0.22) 

The Q-Q plot in Figure 3 confirms this non-normality through deviations from the 45° reference 

line, especially in the distribution tails. This aligns with the Kolmogorov-Smirnov test results (p 

< 0.001), indicating the need for error distribution adjustments in future work. 

 

Figure 3. Q-Q plot comparing residual quantiles to theoretical normal distribution 

5.4 Temporal Performance 

Figure 4 illustrates the model’s prediction accuracy over time, showing close alignment between 

actual and predicted AQI values (Pearson r = 0.96). The largest deviations occur during rapid 

pollution changes, suggesting the 48-hour window may miss some abrupt transitions. 
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Figure 4. Comparison of actual (blue) and predicted (red) AQI values over time 

The scatter plot in Figure 5 demonstrates strong linear correlation (R² = 0.91), with most points 

clustered near the ideal prediction line. Some under-prediction is visible at high AQI values 

(>0.8), consistent with the residual analysis. 

 

Figure 5. Scatter plot of predicted vs actual AQI values with regression line 

5.5 Training Dynamics 

Figure 6 shows stable training with converging MAE curves, indicating effective learning 

without overfitting. The small gap between training (0.039) and validation (0.042) MAE 

suggests good generalization. 
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Figure 6. Training and validation MAE curves over 40 epochs 

The confusion matrix in Figure 7 reveals the class imbalance challenge, with all Good samples 

misclassified as Moderate. For the dominant classes, the model achieves 90%+ accuracy, with 

moderate confusion between Moderate and Severe categories. 

 

Figure 7. Confusion matrix showing classification performance by AQI category 

 

5.6 Ablation Study 

We examine key architectural choices through controlled experiments: 

Table 2. Ablation study results (test MAE) 

Variant MAE 

Full model 0.042 

w/o residual connections 0.051 

w/o layer normalization 0.048 

w/o dropout 0.045 

Single encoder layer 0.049 
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LSTM baseline  0.055 

The results demonstrate the importance of each component, particularly residual connections 

(18% worse MAE when removed) and multiple encoder layers (14% worse with single layer). 

The transformer outperforms the LSTM baseline by 24%, validating its superior sequence 

modeling capability. 

6. Discussion and Future Work 

6.1 Limitations of the Proposed Method 

While the stacked transformer encoder demonstrates strong performance in AQI forecasting, 

several limitations warrant discussion. The model’s reliance on complete historical sequences 

means it cannot handle missing data points without imputation, potentially introducing bias when 

gaps exceed the forward-filling capacity. This becomes particularly problematic during sensor 

malfunctions or communication outages, which occur frequently in real-world air quality 

monitoring networks  The attention mechanism’s quadratic complexity with respect to sequence 

length also limits practical deployment for very long historical windows, despite theoretical 

advantages in capturing long-range dependencies. Empirical results show degraded performance 

during rapid pollution transitions, suggesting the model may benefit from adaptive window 

sizing or hierarchical attention mechanisms that can better resolve abrupt changes. 

The residual analysis reveals systematic under-prediction of extreme AQI values, a common 

challenge in environmental forecasting where tail events carry disproportionate health impacts. 

This limitation stems partly from the MSE loss function’s tendency to prioritize average-case 

performance over rare events, and partly from the dataset’s inherent class imbalance where 

severe pollution episodes constitute less than 5% of samples. Alternative approaches like 

quantile regression or extreme value theory integration could help address this issue .The 

model’s current architecture also lacks explicit mechanisms to incorporate spatial correlations 

between monitoring stations, potentially missing important regional pollution patterns that affect 

local AQI measurements . 

6.2 Potential Application Scenarios 

The transformer-based approach shows particular promise for several practical applications in 

urban air quality management. Real-time forecasting systems could integrate the model into 

early warning platforms, where its computational efficiency enables frequent updates as new 

sensor data arrives. Municipal agencies might deploy the system for dynamic air quality 

regulation, using predictions to optimize traffic control measures or industrial activity scheduling 

during anticipated pollution episodes . The model’s ability to process multiple pollutants 

simultaneously makes it suitable for source attribution studies, where attention weights could 

help identify dominant contributors to poor air quality during specific meteorological conditions. 

Healthcare applications represent another important direction, with potential integration into 

personalized exposure assessment tools for vulnerable populations. By combining the AQI 

predictions with individual mobility patterns, the system could generate tailored 
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recommendations for outdoor activity timing or route planning. The classification capabilities 

further enable automated public health alerts when predicted AQI crosses regulatory thresholds, 

though this requires careful calibration to balance false alarms against missed warnings. 

Emerging smart city infrastructures could leverage the model’s outputs for automated building 

ventilation control or urban planning decisions, particularly when combined with emission 

inventory data and land use patterns. 

7. Conclusion 

The proposed transformer-based encoder model demonstrates significant advancements in air 

quality prediction by effectively capturing complex temporal dependencies among multiple 

pollutants. Through its multi-head self-attention mechanism and hierarchical feature extraction, 

the architecture achieves superior performance compared to traditional sequence models while 

maintaining computational efficiency. The experimental results on Delhi’s air quality dataset 

validate the model’s capability to handle both short-term fluctuations and long-term trends in 

AQI values, with particular strength in predicting moderate to severe pollution episodes. The 

global average pooling strategy proves effective in condensing temporal information without 

sacrificing predictive accuracy, offering a practical solution for real-time forecasting 

applications. 

Key architectural innovations, including residual connections and layer normalization, address 

common challenges in training deep transformer models while preserving their ability to learn 

intricate pollutant interactions. The sliding window approach combined with careful 

normalization protocols ensures robust handling of multivariate time-series data with varying 

scales and distributions. The model’s limitations in predicting extreme AQI values and rare 

pollution events highlight important directions for future research, particularly in loss function 

design and extreme value modeling. These findings contribute to the growing body of work on 

attention-based architectures for environmental monitoring, providing a framework that balances 

accuracy with practical deployment considerations. 

The successful application of transformer encoders to air quality prediction opens new 

possibilities for urban environmental management systems. The model’s ability to process 

multiple pollutants simultaneously while maintaining interpretability through attention weights 

offers valuable insights for pollution source attribution and mitigation strategy development. 

Future extensions could explore hybrid architectures combining the strengths of transformers 

with spatial modeling techniques to better capture regional pollution patterns. The ethical 

implications of such predictive systems underscore the need for continued research into fair and 

transparent AI applications in environmental health. This work establishes a foundation for 

further development of deep learning approaches that address the complex challenges of urban 

air quality forecasting. 
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