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Abstract: This paper introduces the Weighted Inverted Generalized Exponential (WIGE)
distribution byinducing inverted weight function into existing Inverted Generalized Exponential
distribution. Various statistical properties of the proposed distribution were explicitly derived
and the method of maximum likelihood estimation was used in estimating the model parameters.
The model was applied to a real life data set and its performance was assessed with respect to
Inverse Exponential (IE), Generalized Exponential (GE) and Inverted Generalized Exponential
(IGE) distributions using the log-likelihood and Akaike Information Criteria as basis for
judgment. The proposed distribution gives better fit when subjected to a positive skewed with
extraneous variation lifetime dataset.
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I. INTRODUCTION

The weibull and exponential distributions have been considered by many authors in modelling
lifetime data. For instance, survival analysis in living and engineering sciences by Diamoutene,
Abdoulaye et al. (2016), parametric regression model for survival data by Zhongheng Zhang
(2016) and many more. However, more generalizations ofweibull and exponential distributions
are still required for difference lifetime data behaviours.

Generalized exponential distribution introduced by Gupta and Kundu, (2000) has been studied
extensively by several authors. Thisdistribution can be used as an alternative to gamma or
weibull distribution.Oguntunde and Adejumo, (2015) proposed a two parameter Inverted
Generalized Exponential (IGE) and a three parameter Generalized Inverted Generalized
Exponential (GIGE) probability distributions as generalizations of the one-parameter
Exponential distribution.They explored the statistical properties of the GIGE distribution and
estimated its parameters using the method of maximum likelihood estimation (MLE).

Weighted Distribution

Suppose X is a non-negative random variable with probability density function f (x)

Then, the weighted density function f,, (x)is defined as
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where w(x) is the weight function and w;, = Iw(x) f (X)dx
0

A random variable Xis said to have an Inverted Generalized Exponential distribution with
parameters a and A if its Probability Density function (PDF) and Cumulative Distribution

Function (CDF) are given respectively by:
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Il.  MATERIALS AND METHODS

Let X denote a continuous random variable, considering the weight function W(x) = x tand

the two-parameter Inverted Generalized distribution as given in equation (1) and (2), then the pdf
and cdf of the Weighted Inverted Generalized Exponential distribution are:
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respectively.
where A is a scale parameter and o is the shape parameter

Derivation of WIGE Distribution
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where f (x) is the pdf of IGE and W, =jw(x) f (x)dx
0
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Therefore; f,(x) =

f.(X)= B{xp(a +1)—\P(1)]}
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Equation (11) is the pdf of the Weighted Inverted Generalized Exponential distribution.

Its associated cdf is obtained as follows:

F(x):'x[f(y)dy

ae{%] (x+2)hypergeom [{1 11-a, x+/12/1 , {2, 2)(;’1 , e(i]]
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The hypergeom in the CDF is generalized hypergeometric function.

I. PROOF OF VALIDITY OF WIGE DISTRIBUTION

For the PDF to be valid, it suffices that; I f,(x)dx=1
0

X Ll- e XJ dx =
0
ai?
9:
where (a +l)—\P(1)
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Figure 1: Plot of probability density function of IE, IGE, WIGE & GE distributions
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Figure 2: Plot of cumulative density function of WIGE

A. Reliability Analysis
Survival Function: The Survival function is given by:

S(x)=1-F(x)

e {4
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Hazard function: The Hazard function is also given by:
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Figure 3: Survival plot of the WIGEI Distribution
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Figure 4: Hazard plot of the WIGE Distribution

B. Moment of WIGE Distribution
The moment of distribution is very important, it will help us to determine the mean, dispersion,
coefficients of skewness and kurtosis. The kth moments of a non negative random variable X is
defined as
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C. Moment Generating Function of WIGE Distribution
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Following (Cordeiro, 2011) the expression for moment generating function is given as;

(=3 e

Ll (1) Y& Tla-kjkikey

The moment generating function is the expected value of exponential function of tX, i.e, the
moment generating function of random variable X is given as:

M, (t)=E(e*)

Where E(etX ) :Ie‘X f(x)dx

with the use of Taylor’s series

and E (Xr)is defined in Equation (16) above, then
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D. Parameter Estimation of WEIE distribution
The Estimation of Weighted Inverted Generalized Exponential distribution is obtained using the
Method of Maximum Likelihood Estimation (MLE). The formula of MLE contains the unknown
parameters of the distribution. The values of these parameters that maximize the sample
likelihood are known as the ML estimates (Elgarhy, 2017)
Let x,,X,,...,x, be arandom sample of size “n” from Weighted Inverted Generalized distribution

defined in equation (3) and (4), then Likelihood function L(x/«, ) is given by

L(x/a,/l)zﬁ f(x./a,l)
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Let | =log L(x/ e, A)
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Differentiating equation (18) with respect to a
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Where ¥(1, o +1) = d

e I' (e +1)is known as tri-gamma function
(04

Differentiating equation (18) with respect to A

20

Setting equation (19) and (20) to zero and solving the resulting non-linear equations
simultaneously will give the maximum likelihood estimates of parameters « and A

Il. APPLICATION TO DATA SET

The application to real life data set of the Weighted Inverted Generalized Exponential
distribution is provided. The performance of the WIGE distribution was compared with that of
existing Inverse Exponential (IE), Generalized Exponential (GE) and Inverted Generalized
Exponential (IGE) distributions using log-likelihood and Akaike Information Criterion as
selection criteria. The distribution that corresponds to the highest log-likelihood value and lowest
AIC value is selected as the best for the data set used.

Data Set: Fertility is a key component that determines size of a household and nation population.
Fertility analysis important for policymakers to conclude guidance for population control and
also for the evaluation of performance of family planning programmes. The birth interval of the
second child is defined as difference in months between first birth and second birth.
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The Data set used for further analysis in this research is secondary data obtained from
Demography and Health Survey 2015. Data set contains the length (months) of the preceding
birth interval of second birth from 532 women from South East of Nigeria where the household
heads are female

Table 1: Summary of length (months) of the preceding birth interval for second birth.

N Mean | Med. | Var. Skewness | Kurtosis

532 | 40.34 | 32.00 | 876.0415 | 4.438698 | 37.34944

Table 2: Analysis of the performance of the competing distributions
Model Estimates LL AIC
S
WIGE | — 4.0624(0.2632 708445 ‘1“272'9

2 —83.8563(0.7673)
IGED | _5.1325(0.2018) S ‘6‘874'6
7 =69.5320(NA) | °
CE | 4 =5.0046(0.4567) 235108 ‘7‘?47'9
2 =0.0580(0.0027)| 80
IE . i 4963.9
2=30.3300(1.0490) 400 05 | 23
2

https://doie.org/10.1002/1IIMRE.2022142302 Volume No. 2, Issue. 9, September, 2022 Page 27


https://doie.org/10.1002/IJMRE.2022142302

International Journal of Multidisciplinary Research and Explorer (IJMRE) ISSN: 2833-7298

ftx)

0.000 0005 0.010 0015 0020 0025

0 50 100 150 200 250 300 350

X

Figure 5 Histogram with competing distributions on birth interval data set

Remarks: Table 1 reveals that the dataset considered for this study is positively skewed with
extraneous variation(mean = 40.34 and variance = 876.0415). Also, From Table 2, the WIGE
distribution has the highest log-likelihood value and the lowest AIC value, therefore, it can be
concluded that it more suitable for the data set than other existing distributions.

I11. CONCLUSION

The Weighted version of the Inverted Generalized Exponential distribution has been successfully
derived. The model has unimodal (inverted bathtub) and decreasing shapes (depending on the
value of the parameters). Explicit expressions for its basic statistical properties have been
successfully derived. The model exhibits unimodal and decreasing failure rates, this implies that
the model can be used to describe and model real life phenomena with unimodal or decreasing
failure rates. For the real life application provided, the Weighted Inverted Generalized
Exponential distribution performs better than other existing distributions; it is however a good
and competitive model.
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