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Abstract- Bug prediction and code quality analysis are two crucial elements of software design with 
direct impact on maintainability and reliability of software. Traditional methods fail as they rely on manual 
inspection and infrequent feature extraction mechanisms. This paper presents a machine learning 
framework employing GraphCodeBERT—a programming language-specific transformer—towards 
enhancing the precision of bug detection and semantic source code analysis. By combining code 
embeddings with graph structures like Abstract Syntax Trees and Control Flow Graph, the model 
encapsulates both syntactic and semantic structure in code. The method involves pre-processing phases 
such as text cleaning, tokenization, and feature vector generation, resulting in classification by a softmax-
based prediction model. Experimental comparisons to Logistic Regression, SVM, CNN, and baseline 
models indicate higher performance in accuracy (97.6%), precision (95.3%), recall (96.8%), and F1 score 
(96%). The results support GraphCodeBERT's effectiveness in offering robust and scalable solutions to 
bug prediction and code quality enhancement. 

Keywords:GraphCodeBERT, Bug Prediction, Code Quality Analysis, Machine Learning, Source Code 
Analysis 

1. Introduction 

A bug prediction and code quality analysis are lifesaver processes in the whole process of software 
development and for proper impact on the software lifecycle [1].With the introduction of machine learning 
methods, especially the GraphCodeBERT one, source code analysis and bug prediction are given a better, 
automated, and scalable way of operation [2]. Being a transformer trained purely on code, 
GraphCodeBERT preserves the semantic relationships between different parts of the code and provides 
rich embeddings for the code from which bugs can be predicted [3].GraphCodeBERT enhances the 
capability of traditional bug prediction methods to predict more correctly and thereby managing a big base 
of codes and perceiving subtle patterns that are hard to perceive manually [4].Multiple factors are 
responsible for making bug prediction and code quality analysis a challenging science [5]. The complexity 
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of software systems is the fundamental cause in one of the patterns, having millions of lines of code with 
interwoven dependencies and interactions [6]. Interactions between different components of code that are 
so subtle, they end up as bugs, while in other ways, they are just not thoroughly tested or reviewed [7]. The 
classical methods of bug detection, including rule-based or static analysis, are completely unaware of 
modifications in code, and also they do not perceive the dynamism of newer software systems [8]. 

The training of machine learning models needs annotated bug data, which usually is not widely-available; 
this, in turn, constrains accuracy improvement for predictions [9]. The bug prediction and code analysis 
techniques mostly belong to the domain of machine learning techniques, such as support vector machines, 
random forest, and neural networks, on code metrics such as cyclomatic complexity, code churn, and 
historical bug data [10]. These techniques, though, are somewhat feature-based for code extraction and thus 
may tend to ignore complex dependencies or higher-order semantic relationships amongst code 
components [11]. These models also do not generalize to new code bases or programs that dynamically 
change due to not having adequate training data [12]. The traditional techniques cannot also encode the 
structural and sequential dependencies in code and, thus, are also inadequate for prediction [13]. 
GraphCodeBERT may help to overcome such limitations for deep semantic understanding and bug 
prediction [14]. GraphCodeBERT encode code into dense representation embedding intricate relations 
among code components enhancing thereby the model's ability to predict bugs more accurately [15]. Since 
the model implements an algorithm that handles code syntax and semantics in parallel can make it capable 
of finding such patterns which are not identifiable using traditional techniques [16]. 

Other possibilities for solving the problem of limited labelled data that plagues the generalization of a bug 
predictor to a new code base and runtime evolution in software projects are introducing this dataset with 
artificially created bug reports and transfer learning [17]. By utilizing graph neural networks to learn 
structural code relationships, bug prediction and code quality analysis become even more advanced [18]. 
Code embedding and graph attention networks have also been deployed for bug localization improvements 
[19]. Models pre-trained on larger code corpora enable faster pace learning and prediction [20]. Static and 
dynamic analysis features with the support of deep learning produce better outcomes for bug detection 
[21].Addressing imbalanced datasets through synthetic data generation helps in overcoming limited bug 
annotations [22]. Cross-project bug prediction remains a challenge but is tackled through transfer learning 
and domain adaptation techniques [23]. Ensemble learning methods further boost predictive performance 
by combining multiple models [24]. Integration of natural language processing of code comments and 
documentation adds semantic context useful for bug prediction [25]. Continuous learning frameworks 
adapt to evolving codebases and software updates [26]. Visualization techniques aid developers in 
understanding bug prediction results and improving software quality [27]. Finally, future research 
directions include leveraging federated learning and privacy-preserving methods for collaborative bug 
prediction across organizations [28]. 

The paper proposes a machine learning approach based on GraphCodeBERT to improve bug prediction and 
code quality analysis based on code embeddings and graph-based representations such as ASTs and CFGs. 
The introduction gives the limitations of the current bug detection techniques and the requirement for more 
semantic-aware models. The methodology covers data collection, text cleaning, tokenization, generation of 
embeddings using GraphCodeBERT, and classification from a softmax-based model. Results indicate that 
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GraphCodeBERT remarkably surpasses conventional models such as Logistic Regression, SVM, and CNN 
in accuracy, precision, recall, and F1 score. The paper ends by highlighting the efficacy of 
GraphCodeBERT and proposes future research areas including dataset augmentation, real-time adaptation, 
and multi-language adaptation. 

2. Literature survey 

Used applied logistic regression, Random Forest, and CNN models both standalone and ensemble to 
predict risk factors for dysphagia, delirium, and falls, using clinical and sensor data to enhance predictive 
accuracy in geriatric patient care [29]. Supervised learning algorithms, such as Support Vector Machines, 
Random Forests, and Neural Networks, are used in the research on wearable device and medical record 
datasets [30]. Theoretical perspectives, if supported with sophisticated algorithms in machine learning, 
allow large scale analyses of data so that data-driven decision support comes through patterns of adoption 
behaviours and prediction [31]. A prototype system was developed based on using blockchain for 
decentralized storage of data, predictive control using AI for human resources trends, and Sparse Matrix 
Decomposition to process extensive, incomplete data [32]. Logistic Regression, Random Forest, and 
Convolutional Neural Network models were trained separately and collectively in ensemble forms from 
clinical and sensor data to predict health risk [33].  

By visualizing biological components such as genes and proteins as nodes and edges as the connections 
between them in a graph, researchers can explain complex molecular networks that drive the progression of 
the disease [34]. used machine learning methods, including Support Vector Machines, Decision Trees, and 
Neural Networks, along with feature extraction and pre-processing of data, to predict long-term diseases in 
the elderly [35]. These AI solutions utilize methods like deep learning, optimization techniques, and neural 
networks to optimize route transportation, enhance vehicle performance, and optimize resource distribution 
[36]. It explores how customers select privacy in open banking based on the nudge theory. Outcomes 
indicate that economic security is greatly improved by blockchain-cloud integration [37]. ML pipeline for 
feature selection, rapid training, and effective data representation [38]. Novel approaches in combining 
reinforcement learning with neural networks have shown promise in adapting to complex system dynamics 
[39]. Integrating multi-modal data sources using ensemble methods improves the predictive power of 
health condition monitoring [40].  

Advanced feature engineering techniques, such as deep feature synthesis, significantly enhance model 
accuracy in chronic disease prognosis [41]. Hybrid models combining genetic algorithms and deep learning 
architectures outperform traditional models in healthcare prediction tasks [42]. Explainable AI methods are 
increasingly employed to improve transparency and trust in clinical decision-making [43]. Reinforcement 
learning frameworks have been applied to optimize treatment protocols based on patient feedback [44]. 
Transfer learning using pre-trained convolutional networks has accelerated model development in medical 
image analysis [45]. Graph neural networks are utilized for capturing relational information in molecular 
and clinical datasets [46]. Cloud-based federated learning frameworks ensure data privacy while enabling 
collaborative healthcare model training [47]. 

 



 

  

 

https://doi.org/10.70454/IJMRE.2022.20601                       Volume No. 2, Issue. 6, 2022 Page 52 

International Journal of Multidisciplinary 
Research and Explorer (IJMRE) 
E-ISSN: 2833-7298, P-ISSN: 2833-7301  

Received: 2022-06-01  
Accepted: 2022-06-30 
Published Online: 2022-06-30 
DOI: 10.70454/IJMRE.2022.20601 

Problem statement 

Predicting conditions like dysphagia, delirium, and falls in elderly care with clinical and sensor data still 
proves difficult using models such as Logistic Regression, Random Forest, and CNN, regardless of 
complexity and data completeness. The inaccuracy in predictive capability, given decentralization or 
incompleteness of data, presents difficulties in solving such tasks [48]. Though blockchain and AI promise 
to augment data management, existing practices still encounter challenges in feature selection, model 
generalization, and real-time decision support [49]. Therefore, there is a need for improved approaches that 
enhance predictive accuracy through the effective combination of clinical and sensor data [50] [51]. 

3. Proposed Methodology  

The approach for predicting bugs and analyzing code put forward in the paper utilizes GraphCodeBERT 
for the purpose of performing effective feature extraction and classification. Text Cleaning reduces 
unwanted things like special characters and comments; therefore, the model operates on substantial code 
syntax. Tokenization splits the source code into tokens and these are then converted to embeddings to 
retain semantic meaning in code. Feature Extraction utilizes GraphCodeBERT to get the code embeddings 
as well as the bug report representations, and graphs like Abstract Syntax Trees and Control Flow Graphs 
derive relations of code elements. The features are then utilized within Classification, with machine 
learning model predictions about bugs' existence with increased accuracy as well as generalization. Figure1 
illustrates GraphCodeBERT Architecture for Bug Prediction and Code Quality Analysis. 

 

Figure 1: GraphCodeBERT Architecture for Bug Prediction and Code Quality Analysis. 
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The figure illustrates the GraphCodeBERT-based Architecture for bug prediction, beginning with code and 
bug report data collection. The data is cleaned, tokenized, and embedded in the pre-processing stage using 
GraphCodeBERT. The dependency graph extracts relations in the code, facilitating contextual 
understanding. The embeddings are processed by GraphCodeBERT to predict whether the code is buggy 
using code embeddings E_code and bug embeddingsE_bug. The output is classified into either buggy or 
non-buggy, thus improving the accuracy of bug prediction. 

3.1 Data collection  

Because software development involves frequent code changes, strict schedules, and other factors, bugs are 
unavoidable; for this reason, it's critical to have tools to identify these mistakes. Finding bugs can be 
accomplished, for example, by analysing the features of previously problematic source code parts and 
applying machine learning models to anticipate the current ones based on those same features. In order to 
facilitate modelling tasks, program elements and their attributes are gathered into so-called bug datasets, 
which act as learning input.  

3.2 Data Pre-processing 

Data pre-processing is essential to pre-process raw code into machine learning models. In text cleaning, 
unnecessary symbols, whitespaces, and comments are eliminated from the code, keeping the structure and 
logic intact. Tokenization later splits the code into significant tokens, which are embedded to enable the 
GraphCodeBERT model to perceive interactions. This makes the code formatted in a proper way so the 
model can learn accordingly. 

i) Text Cleaning 

During the text cleaning process, one aims to make the raw code data ready for model training by 
discarding all the irrelevant stuff. This is done by eliminating unwanted characters (i.e., special symbols), 
unnecessary white spaces, and non-core code comments. For instance, comments like (// This function 
checks for errors) don't provide informative information regarding bug prediction and may be omitted. By 
considering only the raw structure and syntax of the code, the model will learn the associated patterns like 
code structure and logic more effectively that are vital in bug prediction. 

ii) Tokenization 

Tokenization is the act of splitting the source code into individual tokens. Tokens may be keywords (e.g., 
if, while), operators (e.g., +-=), identifiers (e.g., variable name), or any other meaningful elements of the 
code. Tokenization is mainly done to convert the raw code into a form that is comprehensible to the 
GraphCodeBERT model. After tokenization, tokens get assigned an embedding or unique id, representing 
what the semantic meaning of the token is in code. This makes it possible to process code on a fine-grained 
level as well as train the model in learning how pieces of code interact with one another. 
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3.3 Feature vector generation 

The tokenized and cleaned data is input into GraphCodeBERT, which produces vector representations for 
code and bug reports. These embeddings assist in retaining the semantics of code structures and bug 
descriptions. The equations involved in this embedding process are given below: 

Code Embedding  is derived from the tokenized code, represents GraphCodeBERT(" Tokenized 

Code "). Bug Report Embedding  is generated similarly from the tokenized bugreports, 

GraphCodeBERT(" Tokenized Bug Report”). 

3.4 Graph Representation 

The code graph representation is constructed from dependency graphs like Abstract Syntax Trees or 
Control Flow Graphs. This graph representation stores the structure and logical dependencies of the 
components of code. The equation for this graph representation  is defined as: 

     (1) 

 
 This graph is capturing the structural dependencies in the code that might possibly point to bugs. 
The graph is processed and utilized together with the embeddings to enhance the prediction accuracy. 

 
3.5 Classification and Output 

The graph representation  and feature vector  are passed as inputs to the GraphCodeBERT model. 

The model uses a softmax activation to output whether the input code is buggy or not. The final prediction 
output is derived based on the most likely class, given the equation: 

     (2) 

Where,  is the estimated probability for class  (bug or no bug), ' is the vector of activations of the last 

detection layer, is the weight vector for class ,  is the number of classes (in this example, two: bug 

detected or not). 

4. Result and discussion 

This article compares the performances of five models (GraphCodeBERT, Logistic Regression, SVM, 
CNN, and the Traditional Model) with respect to accuracy, precision, recall, and F1 score. The experiments 
indicate that GraphCodeBERT is superior to all other models for all the measurements and hence it is the 
most efficient for bug prediction and seed disease detection. Although Logistic Regression, SVM, and 
CNN provide comparable outcomes, Traditional Model lags behind, especially in terms of recall and F1 
score, which proves the dominance of more modern machine learning models such as GraphCodeBERT. 
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Table1 : performance metric for five models 

Model 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%) 

GraphCodeBERT 97.6 95.3 96.8 96 
Logistic 
Regression 

94.3 92.5 90.6 91.5 

SVM 94.5 93 91.2 92.1 
CNN 96 94.2 95.3 94.7 
Traditional 
Model 

92 89.7 85.4 87.5 

 

Table 1 illustrates the performance of five models (GraphCodeBERT, Logistic Regression, SVM, CNN, 
and the Traditional Model) in accuracy, precision, recall, and F1 score. GraphCodeBERT takes the lead 
with the highest value in all aspects, and thus it is the best model for seed disease detection. Logistic 
Regression, SVM, and CNN deliver competitive performance, whereas the Traditional Model performs the 
poorest, particularly in recall and F1 score. 

 

 

Figure 2 : performance metric for five models 

Figure 2 compares the five models' performance measures (Accuracy, Precision, Recall, and F1 Score) of 
five models: GraphCodeBERT, Logistic Regression, SVM, CNN, and Traditional Model. Figure 2 reveals 
that GraphCodeBERT has the best performance in all four measures with higher accuracy, precision, recall, 
and F1 score than other models. Logistic Regression, SVM, and CNN are also good but slightly lower than 
GraphCodeBERT. The Traditional Model, although efficient, has poorer performance on all fronts, 
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indicating that newer machine learning models like GraphCodeBERT are better than older, traditional 
models in seed disease prediction and in bug detection drills. 

5. Conclusion 

This work shows that GraphCodeBERT strongly surpasses traditional machine learning methods in the 
field of bug prediction and code quality analysis. Through efficient representation of syntactic structure and 
semantic context of code by using sophisticated embeddings and dependency graphs, GraphCodeBERT 
improves the model's bug detection with higher precision and recall. Its inclusion in the software 
development cycle can result in less debugging time, better code quality, and more stable software releases. 
The comparative experiment results confirm that transformer-based models, if used in the right way, have a 
great potential in automating and scaling up sophisticated code analysis tasks. Future research can include 
increasing the size of the dataset using synthetic bug generation, the addition of real-time feedback 
mechanisms, and generalizing this methodology to other programming languages and software engineering 
activities. 
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