

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 16

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

Efficient Test Case Generation in Software Testing Using
DistilGPT-2 and EfficientNet-Lite

1Naga Sushma Allu, 2Sharadha, 3Durga Praveen Devi ,4R. Puspha kumar

1Belong (Telstra) Telecomms, Victoria,Australia
2GOMIAPP LLC, NJ, USA

3O2 Technologies Inc, California,USA
4Assistant Professor, Department of Information Technology,

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of
Science and Technology, Tamil Nadu, Chennai, India.

1Nagasushmaallur@gmail.com
2kodadisharadha1985@gmail.com

 3durgapraveendeevi1@gmail.com
4pushpakumar@veltech.edu.in

Abstract- Software testing plays a critical role in ensuring software reliability, yet traditional test case
generation approaches often suffer from high computational overhead and inefficiency. Traditional methods,
including genetic algorithms, struggle with scalability and fail to optimize execution time while maintaining
high test coverage. To address these limitations, this paper proposes a lightweight deep learning-based test
case generation approach using DistilGPT-2 and EfficientNet-Lite. Unlike conventional deep learning
models, our method efficiently generates both text-based and GUI-based test cases while reducing
computational cost. The novelty of this approach lies in integrating CodeT5-Small for feature extraction,
DistilGPT-2 for textual test case generation, and EfficientNet-Lite with an RNN for GUI-based testing,
enabling a more effective, low-resource test generation pipeline. The results demonstrate that our method
achieves higher test coverage (95%), improved efficiency (90%), and greater testing reliability (98%)
compared to advanced genetic algorithms, while also reducing computational overhead to 60%. Compared to
existing approaches, our method outperforms traditional AI-based testing solutions in terms of accuracy,
fault detection rate, and efficiency. The proposed method enhances software testing by minimizing redundant
test cases, improving execution pass rates, and ensuring broader code coverage, making it a scalable and
cost-effective solution for modern software development. This work paves the way for lightweight
transformer-based models in test case generation, ensuring robust test automation with minimal resource
consumption.

Keywords: Lightweight Deep Learning, Test Case Generation, Software Testing, DistilGPT-2,
EfficientNet-Lite

1. Introduction

This makes software testing a fundamental and indispensable process in software development, thus helping
to assure a software reliability standpoint against functionality and security, and other factor considerations
related to quality[1]. As software systems increase in scale and complexity, it becomes ever more important
to have adequate testing mechanisms[2]. Manual test case design was once considered the principal approach
to validating any software but has become non-existent for larger modern applications owing to testing being
laborious, prone to human error, and unable to keep pace with rapid developmental cycles[3]. In response to
this, a shift has taken place in favour of automatic test case generation, which handles issues of human

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 17

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

intervention, rapid testing, and high coverage of defect detection[4].Automated test case generation includes
a broad range of techniques and methods, and they range from the classical heuristic and metaheuristic
search methods in artificial intelligence to the machine learning methods in the forefront of today's research.
Genetic algorithms, symbolic execution methods, and deep learning-based methods have received
considerable attention in recent times[5]. Nevertheless, the larger difficulty remains: how do you maximize
test coverage and defect detection while ensuring computational efficiency and scalability [6]. In testing
today using random and evolutionary methods, tests are simply duplicated or I am making bad selections in
generating them, which requires unnecessary computational overhead, adding to the run time of executing
tests[7]. Apart from the fact that it slows down the entire development process, it also adds to the cost and
lowers the final software product's possible ability to identify critical defects.

Deep learning approaches present promising opportunities from the standpoint that the models learn complex
input-output relationships and grasp program behaviours to produce intelligent and targeted test cases[8].
With their abilities, however, such methods are always very computationally expensive and require huge
memory and processing power[9]. This appetite for resources comes at the price of adoption, which can be
quite important if we were talking about a constrained environment, say embedded systems, mobile
applications, or continuous integration pipelines under strict time constraints[10]. Hence, this becomes a
highly relevant topic for the balancing of test case quality versus resource efficiency. The inefficiencies and
malfunctions inherent in current test case generation schemes have far-reaching impacts[11]. Inadequate or
poorly designed test suites may conceal latent defects or security vulnerabilities that comprise a sufficiently
serious risk to lead to a software failure or breach post-deployment[12]. Generating test suites that are too
large and have a mass of duplicates spells the wastage of computational resources and lengthening of
feedback loops circumventing the agile development practices[13]. As software projects get larger and
diversified, the necessity of test generation that is scalable, lightweight, and very performant has to be felt.

Several tries have dealt with these problems. Genetic algorithms have been widely deployed for test case
pruning’s, applying evolutionary principles to search more intuitively in the search space[14]. Nonetheless,
the method, however, suffers from slow convergence, premature stagnation, and, most importantly, a lack of
diversity in the test cases generated[15]. Reinforcement learning models have appeared as another alternative
that learns adaptive policies for generating test inputs with better coverage, creating the dilemma that these
generation methods require a huge training set and long training time, which may not be possible in all
development environments[16]. Transformer models, which are well known for their tremendous success in
natural language processing, have been proposed also for test case generation because of their powerful
sequence modelling capability; the downside, however, is that training and inference can be computationally
expensive and hence make it not feasible to be used in environments where resources are
limited[17].Building on these challenges, the optimal trade-off between efficiency and effectiveness remains
at the centre of automated test case generation[18]. Meeting this trade-off becomes a critical issue in
provision for testing needs within real-world software engineering scenarios involving continuous integration
and delivery pipelines due to their just-in-time feedback requirement[19]. In addition, this would pose tests
needing generation in mobile or embedded environments, thus holding the additional requirement of
ensuring that it is indeed done in a lightweight but efficient manner all at the accuracy level[20]. On top of
that, resource-constrained environments like mobile and embedded systems impose extra constraints,
demanding lightweight and efficient test generation mechanisms without any compromise on accuracy.

On the other hand, typically-frequency limitations apply to traditional rule-based or heuristic methods of
testing. These methods usually require manual tuning, domain-related knowledge, and considerable efforts to
be adjusted for other styles of software architecture and technology[21]. As software systems evolve at a fast
pace, these approaches fall behind and hence lose their relevance in a fast-moving development environment.
An adaptive, self-learning, and scalable test generation mechanism is much needed today to realize software

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 18

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

engineering goals[22].Thus, as the software systems get complicated and test case generation alternatives
become limited, there emerges an urgent need for innovations. Future frameworks need to be capable of
providing a fine balance between speed of computation, scalability, adaptability, and test coverage, which
will allow them to go hand-in-hand with software quality assurance in any industrial environment[23].
Bringing together those solutions will help to fast track the software delivery and also expose more critical
defects and vulnerabilities for safer and more dependable software systems[24].

The system introduces the new lightweight deep learning-based test case generation framework combining
DistilGPT-2 and EfficientNet-Lite. This method took a feature extraction method from CodeT5-Small,
followed by test case generation in text form using DistilGPT-2, while for GUI test case synthesis,
EfficientNet-Lite combined with a specialized RNN was used. Through low model complexity and
computationally efficient performance, this leads to improved test coverage and better fault detection along
with high redundancy avoidance and a low computational footprint.

The proposed method’s main contributions,

1. Analyse the ability of a lightweight deep learning method for efficiently generating test cases for
software testing.

2. Develop an optimized framework integrating DistilGPT-2 for text test case synthesis and
EfficientNet-Lite for GUI test case synthesis.

3. Evaluate the model with different metrics to test for efficiency and accuracy.

4. Contrast the method vis-a-vis conventional and existing AI-based approaches to show the advantage
that scalability and computational efficiency bring.

2. Literature Review

In recent years, deep reinforcement learning techniques have become a hot research area in software testing
for automated test case generation. Policy-based reinforcement learning agents have been demonstrated to
increase test coverage and efficiency in executing tests, dynamically adapting to changing software
behaviour[25]. These approaches work intelligently in that they explore the input space, thereby lessening
the probability of redundant or ineffective test cases, which traditional methods such as random testing and
evolutionary algorithms do not do[26].Genetic algorithms (GA) have been used extensively for maximizing
test data production and path coverage. Hybrid metaheuristic frameworks that combine GA with particle
swarm optimization (PSO) and ant colony optimization (ACO) have been proposed by researchers to
synergize their complementary powers[27]. Such hybrids enhance the scalability of test data generation for
large and complex software systems and provide better computational efficiency in the big data
environment[28]. Adaptive and co-evolutionary phenomenon’s within the hybrid framework then optimize
the search, thus enabling efficient exploration of the massive test input space while minimizing resource
consumption[29].

Graph neural networks (GNNs) have recently been introduced as powerful software defect prediction
mechanisms by representing program code in the form of graph structures[30]. This approach, which
capitalizes on syntactic and semantic relations between code components, allows for more efficient bug
recognition[31]. Experimental results conducted on large-scale repositories of software show that GNN-
based models reduce false positive rates and increase accuracy in defect detection against traditional feature-
based or sequence-based models; hence, they possess utmost suitability for software quality assurance in
these days[32].In the field of EV systems, the integration of ANN with electrothermal inverter modelling and
FEA has provided for the real-time simulation of electric traction systems[33]. Such advanced modelling

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 19

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

emphasizes heat management within the inverter to lessen charging time while enhancing the overall
performance and durability of the EV [34]. The combination of data-driven neural models with physics-
based simulation can thus result into finer control strategies contributing to the extended battery life and
operational efficiency.

There are hybrid ways of applying symbolic execution along with transformer-based deep learning methods,
which enable an improved detection of software vulnerabilities[35]. The mixing of AI with static program
analysis leads to higher accuracy in detecting security issues[36]. Since transformers can extract contextual
information from code sequences, symbolic reasoning can then assist in uncovering a certain class of
vulnerabilities that either static or dynamic analyses miss[37].Pre-trained language models and evolutionary
algorithms have been employed together to generate software test cases[38]. Fine-tuned language models can
create semantically meaningful and syntactically correct test inputs that an evolutionary algorithm uses to
iteratively optimize coverage criteria and execution time[39]. The integrated synergy brings about greater
accuracy and shorter execution time than the standard generation technique, thus helping to realize testing
pipelines more effectively[40].

In general, metaheuristic optimization techniques, namely genetic algorithms and particle swarm
optimization, have been used successfully for regression testing[41]. These methods aim to reduce test suite
execution time and either preserve or improve the effectiveness of fault detection [42]. Through selective
prioritization among test cases, these metaheuristics are working against possible redundancy in testing, thus
shortening feedback loops and ensuring that testing resources are optimally utilized without compromising
software quality[43].The combination of cloud infrastructure, automated fault injection, and XML-
standardized test scenario definition resulted in enhanced robustness testing of distributed systems[44].
Cloud platforms provide scalable environments to execute huge volumes of test cases under fault injection
techniques that simulate failure modes to assess the resilience of the system[45]. The XML-based scenario
definition ensures that the test cases of distributed system components are consistent and reusable, hence
supporting a more reliable and efficient testing process[46].

For GUI-based test automation, lightweight deep models, such as distilled transformers, have been proposed
[47]. These models provide for efficient generation and execution of interface test cases with an extremely
low computational overhead, thereby suited for resource-constrained environments[48]. On the other hand,
distillation of large transformer models helps retain essential knowledge, which improves the scale and speed
of UI testing frameworks [49].Finally, the integration of robotic process automation (RPA) with cloud
computing has been proposed for the advancement of automated scheduling and task execution in social
robots[50]. Cloud deep-learning services enhance the robots' ability for behaviour recognition and object
detection so that they can interact better with users[51]. This is particularly beneficial in the assistive
technologies aimed at those elderly and cognitively impaired since the technology enables more adaptable
and context-aware behaviour from the robot, which eventually leads to better care and user experience[52].

3. Problem Statement

Test case generation has experienced some successful applications of deep reinforcement learning to test
coverage and adaptability. Given these advantages, there are considerable barriers, inter alia, resource-
intensive work and lack of convergence of the policy. Consequently, this limits the applicability of the
methods, especially in environments where fast feedback is of the essence and resources are unavailable[53].
Pre-trained language models and evolutionary algorithms have been combined to ensure semantic validity
and parameter optimization of test cases[54]. Traditional evolutionary algorithms, however, tend to
underperform when attempting to efficiently optimize test cases on diversified and complex software
architectures, resulting in suboptimal test generation quality or excessive processing time[55].This, in turn,

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 20

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

highlights an uneasy tension between paying off comprehensive test coverage and paying off computational
feasibility during automated test generation[56]. Existing approaches commonly pose one at the expense of
the other, producing computationally expensive and incoherent test processes that lack sufficient coverage
and diversity [57]. The said trade-off has restrained the scaling and adoption of an advanced test generation
technique within real-world software-development environments, especially in projects that run on
constrained computation resources or with tight development cycles. The approach is primarily aiming at
resolving these problems by using DistilGPT-2 and EfficientNet-Lite, which comprise a couple of
lightweight deep learning models to first improve the efficiency of test generation, second reduce
computational overhead, and thereby third ensure scalability of software testing performance in a wide-array
of applications.

4. Proposed Methodology for Test Case Generation Using DistilGPT-2 and EfficientNet-Lite
in Software Testing

The methodology under study establishes software testing using lightweight deep learning means for
effective test case generation. For training, CodeXGLUE is used after appropriate preprocessing steps such
as tokenization, normalization, and padding. CodeT5-Small is for producing semantic embeddings of
function descriptions, and EfficientNet-Lite is for GUI-based test case synthesis. DistilGPT-2 generates text-
based test cases, and an RNN," either LSTM or GRU, predicts UI interaction sequences. The generated
model is optimized with cross-entropy loss and AdamW. The score for evaluation comprises BLEU, code
coverage, execution pass rate, fault detection rate, redundancy ratio, and generation time. A deployment-
ready system suitable for IDE-based operation ensures efficiency and applicability in real life. The
diagrammatic representation of the whole method is depicted in Figure 1.

Figure 1: Architecture Diagram of the Proposed Method

4.1. Data Collection

The data used for this research finds its origin in CodeXGLUE – Code-to-Test Dataset, a benchmark dataset
for test-case generation. It encompasses function descriptions, source-code-related snippets, and test cases
written manually. This dataset serves as structured training on how code-meaning test cases are related. Once
the data set is thereby collected, preprocessing steps such as tokenization and normalization are undertaken
to prepare it for use in our lightweight deep learning systems.

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 21

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

4.2. Data Preprocessing

4.2.1. Normalization

The function descriptions and code snippets are tokenized, normalized, and padded to a fixed length as

mentioned in Equation (1).

 (1)

4.2.2. Feature Representation

Textual data is converted into embeddings by CodeT5-Small; GUI test cases are extracted as feature maps by
EfficientNet-Lite, as mentioned in Equation (2).

 (2)

4.4. Test Case Generation (Text-Based)

The test case sequence is generated by the model given the function description embeddings using

DistilGPT-2, as mentioned in Equation (3).

 (3)

4.5. Test Case Generation (GUI-Based)

The UI features are fed to an RNN (LSTM/GRU) to predict interaction sequences for test cases, as

mentioned in Equation (4).

 (4)

4.5.1. Model Training & Optimization

Training minimizes the cross-entropy loss between generated test cases and the ground truth, as mentioned in
Equation (5).

 (5)

4.6. Evaluation

4.6.1 BLEU Score (Text Generation Quality)

Measures the n-gram overlap between the generated test cases and the reference test cases, as mentioned in
Equation (6).

 (6)

4.6.2 Code Coverage (%) (Effectiveness of Test Cases)

Measures how well the generated test cases cover the codebase, as mentioned in Equation (7).

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 22

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

 (7)

4.6.3 Execution Pass Rate (%)

Measures the percentage of generated test cases that successfully execute without errorsas mathematically
mentioned in Equation (8).

 (8)

4.6.4. Fault Detection Rate (Bug Finding Ability)

Evaluates how effectively the generated test cases detect defects in the software as mathematically
mentioned in Equation (9).

 (9)

4.6.5. Test Redundancy Ratio (Uniqueness of Test Cases)

Measures how many test cases are redundant (similar to existing ones) to ensure test suite efficiency as
mathematically mentioned in Equation (10).

 (10)

4.6.6 Generation Time (Efficiency Metric)

Measures the average time taken to generate a test case, ensuring computational efficiency as mathematically
mentioned in Equation (11).

 (11)

5. Results

This section comprehensively evaluated the proposed test case generation methodology using lightweight
deep learning models. The performance of DistilGPT-2 + EfficientNet-Lite is analysed via various
parameters: from BLEU score, code coverage, execution pass rate, fault detection rate, redundancy ratio, to
generation time. The results from the experiment yielded higher accuracy, efficiency, and effectiveness for
the presented approach compared to both traditional and heavier deep learning models. The forthcoming
subsections will shed light upon all the metrics of performance, accompanied by visualization.

BLEU score is a measure to assess the closeness of generated test cases against their human-written
counterparts in terms of syntactic and semantic quality. Higher BLEU scores imply more alignment with
reference test cases. The figure compares BLEU scores obtained by different test case generation models,
stressing the fact that DistilGPT-2 has been able to generate high-quality test cases with less computational
cost, as shown in Figure 2.

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 23

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

Figure 2: BLEU Score Comparison of Test Case Generation Models

Code coverage assesses how well the generated test cases execute different parts of the program. A higher
coverage percentage indicates more comprehensive test cases that ensure better software reliability.The
figure presents the code coverage achieved by different test case generation methods, demonstrating that the
proposed approach effectively covers more code regions than traditional methods as shown in Figure 3.

Figure 3: Code Coverage Analysis of Generated Test Cases

The fault detection rate evaluates the ability of the generated test cases to uncover software defects. A higher
rate signifies that the test cases effectively expose vulnerabilities and improve software robustness.The figure
compares the fault detection capabilities of various models, highlighting how the proposed lightweight
approach efficiently detects software bugs with minimal computational overhead as shown in Figure 4.

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 24

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

Figure 4: Fault Detection Rate of Test Case Generation Models

The redundancy ratio identifies duplicate or highly similar test cases. A lower redundancy percentage
indicates a more efficient test suite, reducing unnecessary executions.The figure showcases the redundancy
ratio for different test case generation models, demonstrating that our approach generates more diverse and
unique test cases as displayed in Figure 5.

Figure 5: Test Case Redundancy Ratio Across Models

Comparative studies made between the Advanced Genetic Algorithms and the Proposed Method in terms of
test coverage, efficiency, testing reliability, and computational overhead. From the findings, it became clear
that the proposed method obtains better test coverage (95% over 90%), showing better exploration of the
software under test. Efficiency improves as well, going from 85% to 90%, and testing reliability improves
from 95% to 98%, providing stronger test scenarios. Computational overhead given in Table 1 are 70% and
60%, for the former and the latter, respectively. Our method gains further advantage in computational cost by
lowering it down to 60%.

Table 1: Performance Comparison with ADA

Metric Advanced Genetic Algorithms Proposed Method
Test Coverage (%) 90 95

Efficiency (%) 85 90
Testing Reliability (%) 95 98

Computational Overhead (%) 70 60

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 25

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

6. Conclusion and Future Works

This investigation demonstrates the scope of the proposed lightweight deep learning technique toward test
case generation in software testing. The results disclose that the proposed method can achieve higher
coverage of testing, which is 95%, improved efficiency of 90%, and testing reliability at 98%, unlike
classical genetic algorithm-based methods. Hence, the approach is more scalable because the computational
overhead has also been reduced by 40%. The creation of test cases has become more reliable and efficient
now while being minimally demanding on computing resources. Our future works are focusing on hybrid
lightweight models incorporating transformer-based architectures to further improve training generation
quality while keeping overhead low.

References

[1] Manès, V. J., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., & Woo, M. (2019). The art,
science, and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering, 47(11),
2312-2331.

[2] Akhil, R.G.Y. (2021). Improving Cloud Computing Data Security with the RSA Algorithm. International
Journal of Information Technology & Computer Engineering, 9(2), ISSN 2347–3657.

[3] Liang, H., Pei, X., Jia, X., Shen, W., & Zhang, J. (2018). Fuzzing: State of the art. IEEE Transactions on
Reliability, 67(3), 1199-1218.

[4] Yalla, R.K.M.K. (2021). Cloud-Based Attribute-Based Encryption and Big Data for Safeguarding
Financial Data. International Journal of Engineering Research and Science & Technology, 17 (4).

[5] Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2020). Machine learning testing: Survey, landscapes and
horizons. IEEE Transactions on Software Engineering, 48(1), 1-36.

[6] Peng, H., Shoshitaishvili, Y., & Payer, M. (2018, May). T-Fuzz: fuzzing by program transformation.
In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 697-710). IEEE.

[7] Harikumar, N. (2021). Streamlining Geological Big Data Collection and Processing for Cloud Services.
Journal of Current Science, 9(04), ISSN NO: 9726-001X.

[8] Zou, D., Liang, J., Xiong, Y., Ernst, M. D., & Zhang, L. (2019). An empirical study of fault localization
families and their combinations. IEEE Transactions on Software Engineering, 47(2), 332-347.

[9] Basava, R.G. (2021). AI-powered smart comrade robot for elderly healthcare with integrated emergency
rescue system. World Journal of Advanced Engineering Technology and Sciences, 02(01), 122–131.

[10] Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., & Chatzigeorgiou, A. (2019). Identifying,
categorizing and mitigating threats to validity in software engineering secondary studies. Information
and software technology, 106, 201-230.

[11] Sri, H.G. (2021). Integrating HMI display module into passive IoT optical fiber sensor network for water
level monitoring and feature extraction. World Journal of Advanced Engineering Technology and
Sciences, 02(01), 132–139.

[12] Mohanani, R., Salman, I., Turhan, B., Rodríguez, P., & Ralph, P. (2018). Cognitive biases in software
engineering: A systematic mapping study. IEEE Transactions on Software Engineering, 46(12), 1318-
1339.

[13] Rajeswaran, A. (2021). Advanced Recommender System Using Hybrid Clustering and Evolutionary
Algorithms for E-Commerce Product Recommendations. International Journal of Management Research
and Business Strategy, 10(1), ISSN 2319-345X.

[14] Zou, W., Lo, D., Kochhar, P. S., Le, X. B. D., Xia, X., Feng, Y., ... & Xu, B. (2019). Smart contract
development: Challenges and opportunities. IEEE transactions on software engineering, 47(10), 2084-
2106.

[15] Sreekar, P. (2021). Analyzing Threat Models in Vehicular Cloud Computing: Security and Privacy
Challenges. International Journal of Modern Electronics and Communication Engineering, 9(4),
ISSN2321-2152.

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 26

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

[16] LeClair, A., Jiang, S., & McMillan, C. (2019, May). A neural model for generating natural language
summaries of program subroutines. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE) (pp. 795-806). IEEE.

[17] Sarker, I. H., Abushark, Y. B., Alsolami, F., & Khan, A. I. (2020). Intrudtree: a machine learning based
cyber security intrusion detection model. Symmetry, 12(5), 754.

[18] Naresh, K.R.P. (2021). Optimized Hybrid Machine Learning Framework for Enhanced Financial Fraud
Detection Using E-Commerce Big Data. International Journal of Management Research & Review,
11(2), ISSN: 2249-7196.

[19] Barricelli, B. R., Cassano, F., Fogli, D., & Piccinno, A. (2019). End-user development, end-user
programming and end-user software engineering: A systematic mapping study. Journal of Systems and
Software, 149, 101-137.

[20] Sitaraman, S. R. (2021). AI-Driven Healthcare Systems Enhanced by Advanced Data Analytics and
Mobile Computing. International Journal of Information Technology and Computer Engineering, 12(2).

[21] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2018). The impact of automated
parameter optimization on defect prediction models. IEEE Transactions on Software Engineering, 45(7),
683-711.

[22] Mamidala, V. (2021). Enhanced Security in Cloud Computing Using Secure Multi-Party Computation
(SMPC). International Journal of Computer Science and Engineering(IJCSE), 10(2), 59–72

[23] Wang, S., Liu, T., Nam, J., & Tan, L. (2018). Deep semantic feature learning for software defect
prediction. IEEE Transactions on Software Engineering, 46(12), 1267-1293.

[24] Sareddy, M. R. (2021). The future of HRM: Integrating machine learning algorithms for optimal
workforce management. International Journal of Human Resources Management (IJHRM), 10(2).

[25] Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., & Lyu, M. R. (2019, May). Tools and benchmarks for
automated log parsing. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP) (pp. 121-130). IEEE.

[26] Chetlapalli, H. (2021). Enhancing Test Generation through Pre-Trained Language Models and
Evolutionary Algorithms: An Empirical Study. International Journal of Computer Science and
Engineering(IJCSE), 10(1), 85–96

[27] Combemale, B., & Wimmer, M. (2019, May). Towards a model-based devops for cyber-physical
systems. In International Workshop on Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment (pp. 84-94). Cham: Springer International
Publishing.

[28] Basani, D. K. R. (2021). Leveraging Robotic Process Automation and Business Analytics in Digital
Transformation: Insights from Machine Learning and AI. International Journal of Engineering Research
and Science & Technology, 17(3).

[29] Dingsøyr, T., Moe, N. B., Fægri, T. E., & Seim, E. A. (2018). Exploring software development at the
very large-scale: a revelatory case study and research agenda for agile method adaptation. Empirical
Software Engineering, 23(1), 490-520.

[30] Feist, J., Grieco, G., & Groce, A. (2019, May). Slither: a static analysis framework for smart contracts.
In 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB) (pp. 8-15). IEEE.

[31] Sareddy, M. R. (2021). Advanced quantitative models: Markov analysis, linear functions, and
logarithms in HR problem solving. International Journal of Applied Science Engineering and
Management, 15(3).

[32] Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L. N., Poshyvanyk, D., & Monperrus, M. (2019).
Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on
Software Engineering, 47(9), 1943-1959.

[33] Bobba, J. (2021). Enterprise financial data sharing and security in hybrid cloud environments: An
information fusion approach for banking sectors. International Journal of Management Research &
Review, 11(3), 74–86.

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 27

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

[34] Menzel, T., Bagschik, G., & Maurer, M. (2018, June). Scenarios for development, test and validation of
automated vehicles. In 2018 IEEE intelligent vehicles symposium (IV) (pp. 1821-1827). IEEE.

[35] Narla, S., Peddi, S., & Valivarthi, D. T. (2021). Optimizing predictive healthcare modelling in a cloud
computing environment using histogram-based gradient boosting, MARS, and SoftMax regression.
International Journal of Management Research and Business Strategy, 11(4).

[36] Althoff, M., & Lutz, S. (2018, June). Automatic generation of safety-critical test scenarios for collision
avoidance of road vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 1326-1333). IEEE.

[37] Kethu, S. S., & Purandhar, N. (2021). AI-driven intelligent CRM framework: Cloud-based solutions for
customer management, feedback evaluation, and inquiry automation in telecom and banking. Journal of
Science and Technology, 6(3), 253–271.

[38] Koyuncu, A., Liu, K., Bissyandé, T. F., Kim, D., Klein, J., Monperrus, M., & Le Traon, Y. (2020).
Fixminer: Mining relevant fix patterns for automated program repair. Empirical Software
Engineering, 25.

[39] Srinivasan, K., & Awotunde, J. B. (2021). Network analysis and comparative effectiveness research in
cardiology: A comprehensive review of applications and analytics. Journal of Science and Technology,
6(4), 317–332.

[40] Pham, V. T., Böhme, M., & Roychoudhury, A. (2020, October). Aflnet: A greybox fuzzer for network
protocols. In 2020 IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST) (pp. 460-465). IEEE.

[41] Narla, S., & Purandhar, N. (2021). AI-infused cloud solutions in CRM: Transforming customer
workflows and sentiment engagement strategies. International Journal of Applied Science Engineering
and Management, 15(1).

[42] Jiang, N., Lutellier, T., & Tan, L. (2021, May). Cure: Code-aware neural machine translation for
automatic program repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE) (pp. 1161-1173). IEEE.

[43] Anderson, J. A., Glaser, J., & Glotzer, S. C. (2020). HOOMD-blue: A Python package for high-
performance molecular dynamics and hard particle Monte Carlo simulations. Computational Materials
Science, 173, 109363.

[44] Budda, R. (2021). Integrating artificial intelligence and big data mining for IoT healthcare applications:
A comprehensive framework for performance optimization, patient-centric care, and sustainable medical
strategies. International Journal of Management Research & Review, 11(1), 86–97.

[45] Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2020). Deep code comment generation with hybrid lexical and
syntactical information. Empirical Software Engineering, 25, 2179-2217.

[46] Ganesan, T., & Devarajan, M. V. (2021). Integrating IoT, Fog, and Cloud Computing for Real-Time
ECG Monitoring and Scalable Healthcare Systems Using Machine Learning-Driven Signal Processing
Techniques. International Journal of Information Technology and Computer Engineering, 9(1).

[47] Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J., ... & Dinaburg, A. (2019,
November). Manticore: A user-friendly symbolic execution framework for binaries and smart contracts.
In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp.
1186-1189). IEEE.

[48] Pulakhandam, W., & Samudrala, V. K. (2021). Enhancing SHACS with Oblivious RAM for secure and
resilient access control in cloud healthcare environments. International Journal of Engineering Research
and Science & Technology, 17(2).

[49] Kim, J., Feldt, R., & Yoo, S. (2019, May). Guiding deep learning system testing using surprise
adequacy. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE) (pp.
1039-1049). IEEE.

[50] Jayaprakasam, B. S., & Thanjaivadivel, M. (2021). Integrating deep learning and EHR analytics for
real-time healthcare decision support and disease progression modeling. International Journal of
Management Research & Review, 11(4), 1–15. ISSN 2249-7196.

https://doi.org/10.70454/IJMRE.2022.20201 Volume No. 2, Issue. 2, 2022 Page 28

International Journal of Multidisciplinary
Research and Explorer (IJMRE)
E-ISSN: 2833-7298, P-ISSN: 2833-7301

Received: 2022-02-01
Accepted: 2022-02-28
Published Online: 2022-02-28
DOI: 10.70454/IJMRE.2022.20201

[51] Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., Juefei-Xu, F., ... & Wang, Y. (2018, October). Deepmutation:
Mutation testing of deep learning systems. In 2018 IEEE 29th international symposium on software
reliability engineering (ISSRE) (pp. 100-111). IEEE.

[52] Jayaprakasam, B. S., & Thanjaivadivel, M. (2021). Cloud-enabled time-series forecasting for hospital
readmissions using transformer models and attention mechanisms. International Journal of Applied
Logistics and Business, 4(2), 173-180.

[53] Tuncali, C. E., Fainekos, G., Ito, H., & Kapinski, J. (2018, June). Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In 2018 IEEE Intelligent
Vehicles Symposium (IV) (pp. 1555-1562). IEEE.

[54] Dyavani, N. R., & Thanjaivadivel, M. (2021). Advanced security strategies for cloud-based e-
commerce: Integrating encryption, biometrics, blockchain, and zero trust for transaction protection.
Journal of Current Science, 9(3), ISSN 9726-001X.

[55] Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2019). Low-code as enabler of digital
transformation in manufacturing industry. Applied Sciences, 10(1), 12.

[56] Wang, W., Zhang, Y., Sui, Y., Wan, Y., Zhao, Z., Wu, J., ... & Xu, G. (2020). Reinforcement-learning-
guided source code summarization using hierarchical attention. IEEE Transactions on software
Engineering, 48(1), 102-119.

[57] Alhammad, M. M., & Moreno, A. M. (2018). Gamification in software engineering education: A
systematic mapping. Journal of Systems and Software, 141, 131-150.

