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Abstract- Software testing plays a critical role in ensuring software reliability, yet traditional test case 
generation approaches often suffer from high computational overhead and inefficiency. Traditional methods, 
including genetic algorithms, struggle with scalability and fail to optimize execution time while maintaining 
high test coverage. To address these limitations, this paper proposes a lightweight deep learning-based test 
case generation approach using DistilGPT-2 and EfficientNet-Lite. Unlike conventional deep learning 
models, our method efficiently generates both text-based and GUI-based test cases while reducing 
computational cost. The novelty of this approach lies in integrating CodeT5-Small for feature extraction, 
DistilGPT-2 for textual test case generation, and EfficientNet-Lite with an RNN for GUI-based testing, 
enabling a more effective, low-resource test generation pipeline. The results demonstrate that our method 
achieves higher test coverage (95%), improved efficiency (90%), and greater testing reliability (98%) 
compared to advanced genetic algorithms, while also reducing computational overhead to 60%. Compared to 
existing approaches, our method outperforms traditional AI-based testing solutions in terms of accuracy, 
fault detection rate, and efficiency. The proposed method enhances software testing by minimizing redundant 
test cases, improving execution pass rates, and ensuring broader code coverage, making it a scalable and 
cost-effective solution for modern software development. This work paves the way for lightweight 
transformer-based models in test case generation, ensuring robust test automation with minimal resource 
consumption. 

Keywords: Lightweight Deep Learning, Test Case Generation, Software Testing, DistilGPT-2, 
EfficientNet-Lite 

1. Introduction 

This makes software testing a fundamental and indispensable process in software development, thus helping 
to assure a software reliability standpoint against functionality and security, and other factor considerations 
related to quality[1]. As software systems increase in scale and complexity, it becomes ever more important 
to have adequate testing mechanisms[2]. Manual test case design was once considered the principal approach 
to validating any software but has become non-existent for larger modern applications owing to testing being 
laborious, prone to human error, and unable to keep pace with rapid developmental cycles[3]. In response to 
this, a shift has taken place in favour of automatic test case generation, which handles issues of human 
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intervention, rapid testing, and high coverage of defect detection[4].Automated test case generation includes 
a broad range of techniques and methods, and they range from the classical heuristic and metaheuristic 
search methods in artificial intelligence to the machine learning methods in the forefront of today's research. 
Genetic algorithms, symbolic execution methods, and deep learning-based methods have received 
considerable attention in recent times[5]. Nevertheless, the larger difficulty remains: how do you maximize 
test coverage and defect detection while ensuring computational efficiency and scalability [6]. In testing 
today using random and evolutionary methods, tests are simply duplicated or I am making bad selections in 
generating them, which requires unnecessary computational overhead, adding to the run time of executing 
tests[7]. Apart from the fact that it slows down the entire development process, it also adds to the cost and 
lowers the final software product's possible ability to identify critical defects. 

Deep learning approaches present promising opportunities from the standpoint that the models learn complex 
input-output relationships and grasp program behaviours to produce intelligent and targeted test cases[8]. 
With their abilities, however, such methods are always very computationally expensive and require huge 
memory and processing power[9]. This appetite for resources comes at the price of adoption, which can be 
quite important if we were talking about a constrained environment, say embedded systems, mobile 
applications, or continuous integration pipelines under strict time constraints[10]. Hence, this becomes a 
highly relevant topic for the balancing of test case quality versus resource efficiency. The inefficiencies and 
malfunctions inherent in current test case generation schemes have far-reaching impacts[11]. Inadequate or 
poorly designed test suites may conceal latent defects or security vulnerabilities that comprise a sufficiently 
serious risk to lead to a software failure or breach post-deployment[12]. Generating test suites that are too 
large and have a mass of duplicates spells the wastage of computational resources and lengthening of 
feedback loops circumventing the agile development practices[13]. As software projects get larger and 
diversified, the necessity of test generation that is scalable, lightweight, and very performant has to be felt. 

Several tries have dealt with these problems. Genetic algorithms have been widely deployed for test case 
pruning’s, applying evolutionary principles to search more intuitively in the search space[14]. Nonetheless, 
the method, however, suffers from slow convergence, premature stagnation, and, most importantly, a lack of 
diversity in the test cases generated[15]. Reinforcement learning models have appeared as another alternative 
that learns adaptive policies for generating test inputs with better coverage, creating the dilemma that these 
generation methods require a huge training set and long training time, which may not be possible in all 
development environments[16]. Transformer models, which are well known for their tremendous success in 
natural language processing, have been proposed also for test case generation because of their powerful 
sequence modelling capability; the downside, however, is that training and inference can be computationally 
expensive and hence make it not feasible to be used in environments where resources are 
limited[17].Building on these challenges, the optimal trade-off between efficiency and effectiveness remains 
at the centre of automated test case generation[18]. Meeting this trade-off becomes a critical issue in 
provision for testing needs within real-world software engineering scenarios involving continuous integration 
and delivery pipelines due to their just-in-time feedback requirement[19]. In addition, this would pose tests 
needing generation in mobile or embedded environments, thus holding the additional requirement of 
ensuring that it is indeed done in a lightweight but efficient manner all at the accuracy level[20]. On top of 
that, resource-constrained environments like mobile and embedded systems impose extra constraints, 
demanding lightweight and efficient test generation mechanisms without any compromise on accuracy. 

On the other hand, typically-frequency limitations apply to traditional rule-based or heuristic methods of 
testing. These methods usually require manual tuning, domain-related knowledge, and considerable efforts to 
be adjusted for other styles of software architecture and technology[21]. As software systems evolve at a fast 
pace, these approaches fall behind and hence lose their relevance in a fast-moving development environment. 
An adaptive, self-learning, and scalable test generation mechanism is much needed today to realize software 
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engineering goals[22].Thus, as the software systems get complicated and test case generation alternatives 
become limited, there emerges an urgent need for innovations. Future frameworks need to be capable of 
providing a fine balance between speed of computation, scalability, adaptability, and test coverage, which 
will allow them to go hand-in-hand with software quality assurance in any industrial environment[23]. 
Bringing together those solutions will help to fast track the software delivery and also expose more critical 
defects and vulnerabilities for safer and more dependable software systems[24]. 

The system introduces the new lightweight deep learning-based test case generation framework combining 
DistilGPT-2 and EfficientNet-Lite. This method took a feature extraction method from CodeT5-Small, 
followed by test case generation in text form using DistilGPT-2, while for GUI test case synthesis, 
EfficientNet-Lite combined with a specialized RNN was used. Through low model complexity and 
computationally efficient performance, this leads to improved test coverage and better fault detection along 
with high redundancy avoidance and a low computational footprint. 

The proposed method’s main contributions, 

1. Analyse the ability of a lightweight deep learning method for efficiently generating test cases for 
software testing. 

2. Develop an optimized framework integrating DistilGPT-2 for text test case synthesis and 
EfficientNet-Lite for GUI test case synthesis. 

3. Evaluate the model with different metrics to test for efficiency and accuracy. 

4. Contrast the method vis-a-vis conventional and existing AI-based approaches to show the advantage 
that scalability and computational efficiency bring. 

2. Literature Review 

In recent years, deep reinforcement learning techniques have become a hot research area in software testing 
for automated test case generation. Policy-based reinforcement learning agents have been demonstrated to 
increase test coverage and efficiency in executing tests, dynamically adapting to changing software 
behaviour[25]. These approaches work intelligently in that they explore the input space, thereby lessening 
the probability of redundant or ineffective test cases, which traditional methods such as random testing and 
evolutionary algorithms do not do[26].Genetic algorithms (GA) have been used extensively for maximizing 
test data production and path coverage. Hybrid metaheuristic frameworks that combine GA with particle 
swarm optimization (PSO) and ant colony optimization (ACO) have been proposed by researchers to 
synergize their complementary powers[27]. Such hybrids enhance the scalability of test data generation for 
large and complex software systems and provide better computational efficiency in the big data 
environment[28]. Adaptive and co-evolutionary phenomenon’s within the hybrid framework then optimize 
the search, thus enabling efficient exploration of the massive test input space while minimizing resource 
consumption[29]. 

Graph neural networks (GNNs) have recently been introduced as powerful software defect prediction 
mechanisms by representing program code in the form of graph structures[30]. This approach, which 
capitalizes on syntactic and semantic relations between code components, allows for more efficient bug 
recognition[31]. Experimental results conducted on large-scale repositories of software show that GNN-
based models reduce false positive rates and increase accuracy in defect detection against traditional feature-
based or sequence-based models; hence, they possess utmost suitability for software quality assurance in 
these days[32].In the field of EV systems, the integration of ANN with electrothermal inverter modelling and 
FEA has provided for the real-time simulation of electric traction systems[33]. Such advanced modelling 
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emphasizes heat management within the inverter to lessen charging time while enhancing the overall 
performance and durability of the EV [34]. The combination of data-driven neural models with physics-
based simulation can thus result into finer control strategies contributing to the extended battery life and 
operational efficiency. 

There are hybrid ways of applying symbolic execution along with transformer-based deep learning methods, 
which enable an improved detection of software vulnerabilities[35]. The mixing of AI with static program 
analysis leads to higher accuracy in detecting security issues[36]. Since transformers can extract contextual 
information from code sequences, symbolic reasoning can then assist in uncovering a certain class of 
vulnerabilities that either static or dynamic analyses miss[37].Pre-trained language models and evolutionary 
algorithms have been employed together to generate software test cases[38]. Fine-tuned language models can 
create semantically meaningful and syntactically correct test inputs that an evolutionary algorithm uses to 
iteratively optimize coverage criteria and execution time[39]. The integrated synergy brings about greater 
accuracy and shorter execution time than the standard generation technique, thus helping to realize testing 
pipelines more effectively[40]. 

In general, metaheuristic optimization techniques, namely genetic algorithms and particle swarm 
optimization, have been used successfully for regression testing[41]. These methods aim to reduce test suite 
execution time and either preserve or improve the effectiveness of fault detection [42]. Through selective 
prioritization among test cases, these metaheuristics are working against possible redundancy in testing, thus 
shortening feedback loops and ensuring that testing resources are optimally utilized without compromising 
software quality[43].The combination of cloud infrastructure, automated fault injection, and XML-
standardized test scenario definition resulted in enhanced robustness testing of distributed systems[44]. 
Cloud platforms provide scalable environments to execute huge volumes of test cases under fault injection 
techniques that simulate failure modes to assess the resilience of the system[45]. The XML-based scenario 
definition ensures that the test cases of distributed system components are consistent and reusable, hence 
supporting a more reliable and efficient testing process[46]. 

For GUI-based test automation, lightweight deep models, such as distilled transformers, have been proposed 
[47]. These models provide for efficient generation and execution of interface test cases with an extremely 
low computational overhead, thereby suited for resource-constrained environments[48]. On the other hand, 
distillation of large transformer models helps retain essential knowledge, which improves the scale and speed 
of UI testing frameworks [49].Finally, the integration of robotic process automation (RPA) with cloud 
computing has been proposed for the advancement of automated scheduling and task execution in social 
robots[50]. Cloud deep-learning services enhance the robots' ability for behaviour recognition and object 
detection so that they can interact better with users[51]. This is particularly beneficial in the assistive 
technologies aimed at those elderly and cognitively impaired since the technology enables more adaptable 
and context-aware behaviour from the robot, which eventually leads to better care and user experience[52]. 

3. Problem Statement 

Test case generation has experienced some successful applications of deep reinforcement learning to test 
coverage and adaptability. Given these advantages, there are considerable barriers, inter alia, resource-
intensive work and lack of convergence of the policy. Consequently, this limits the applicability of the 
methods, especially in environments where fast feedback is of the essence and resources are unavailable[53]. 
Pre-trained language models and evolutionary algorithms have been combined to ensure semantic validity 
and parameter optimization of test cases[54]. Traditional evolutionary algorithms, however, tend to 
underperform when attempting to efficiently optimize test cases on diversified and complex software 
architectures, resulting in suboptimal test generation quality or excessive processing time[55].This, in turn, 
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highlights an uneasy tension between paying off comprehensive test coverage and paying off computational 
feasibility during automated test generation[56]. Existing approaches commonly pose one at the expense of 
the other, producing computationally expensive and incoherent test processes that lack sufficient coverage 
and diversity [57]. The said trade-off has restrained the scaling and adoption of an advanced test generation 
technique within real-world software-development environments, especially in projects that run on 
constrained computation resources or with tight development cycles. The approach is primarily aiming at 
resolving these problems by using DistilGPT-2 and EfficientNet-Lite, which comprise a couple of 
lightweight deep learning models to first improve the efficiency of test generation, second reduce 
computational overhead, and thereby third ensure scalability of software testing performance in a wide-array 
of applications. 

4. Proposed Methodology for Test Case Generation Using DistilGPT-2 and EfficientNet-Lite 
in Software Testing 

The methodology under study establishes software testing using lightweight deep learning means for 
effective test case generation. For training, CodeXGLUE is used after appropriate preprocessing steps such 
as tokenization, normalization, and padding. CodeT5-Small is for producing semantic embeddings of 
function descriptions, and EfficientNet-Lite is for GUI-based test case synthesis. DistilGPT-2 generates text-
based test cases, and an RNN," either LSTM or GRU, predicts UI interaction sequences. The generated 
model is optimized with cross-entropy loss and AdamW. The score for evaluation comprises BLEU, code 
coverage, execution pass rate, fault detection rate, redundancy ratio, and generation time. A deployment-
ready system suitable for IDE-based operation ensures efficiency and applicability in real life. The 
diagrammatic representation of the whole method is depicted in Figure 1. 

 

 

Figure 1: Architecture Diagram of the Proposed Method 

4.1. Data Collection 

The data used for this research finds its origin in CodeXGLUE – Code-to-Test Dataset, a benchmark dataset 
for test-case generation. It encompasses function descriptions, source-code-related snippets, and test cases 
written manually. This dataset serves as structured training on how code-meaning test cases are related. Once 
the data set is thereby collected, preprocessing steps such as tokenization and normalization are undertaken 
to prepare it for use in our lightweight deep learning systems. 
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4.2. Data Preprocessing 

4.2.1. Normalization 

The function descriptions and code snippets are tokenized, normalized, and padded to a fixed length  as 

mentioned in Equation (1). 

 (1) 

4.2.2. Feature Representation 

Textual data is converted into embeddings by CodeT5-Small; GUI test cases are extracted as feature maps by 
EfficientNet-Lite, as mentioned in Equation (2). 

         (2) 

4.4. Test Case Generation (Text-Based) 

The test case sequence is generated by the model given the function description embeddings using 

DistilGPT-2, as mentioned in Equation (3). 

    (3) 

4.5. Test Case Generation (GUI-Based) 

The UI features are fed to an RNN (LSTM/GRU) to predict interaction sequences for test cases, as 

mentioned in Equation (4). 

           (4) 

4.5.1. Model Training & Optimization 

Training minimizes the cross-entropy loss between generated test cases and the ground truth, as mentioned in 
Equation (5). 

            (5) 

4.6. Evaluation 

4.6.1 BLEU Score (Text Generation Quality) 

Measures the n-gram overlap between the generated test cases and the reference test cases, as mentioned in 
Equation (6). 

         (6) 

4.6.2 Code Coverage (%) (Effectiveness of Test Cases) 

Measures how well the generated test cases cover the codebase, as mentioned in Equation (7). 
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   (7) 

4.6.3 Execution Pass Rate (%) 

Measures the percentage of generated test cases that successfully execute without errorsas mathematically 
mentioned in Equation (8). 

          (8) 

4.6.4. Fault Detection Rate (Bug Finding Ability) 

Evaluates how effectively the generated test cases detect defects in the software as mathematically 
mentioned in Equation (9). 

    (9) 

4.6.5. Test Redundancy Ratio (Uniqueness of Test Cases) 

Measures how many test cases are redundant (similar to existing ones) to ensure test suite efficiency as 
mathematically mentioned in Equation (10). 

          (10) 

4.6.6 Generation Time (Efficiency Metric) 

Measures the average time taken to generate a test case, ensuring computational efficiency as mathematically 
mentioned in Equation (11). 

           (11) 

5. Results 

This section comprehensively evaluated the proposed test case generation methodology using lightweight 
deep learning models. The performance of DistilGPT-2 + EfficientNet-Lite is analysed via various 
parameters: from BLEU score, code coverage, execution pass rate, fault detection rate, redundancy ratio, to 
generation time. The results from the experiment yielded higher accuracy, efficiency, and effectiveness for 
the presented approach compared to both traditional and heavier deep learning models. The forthcoming 
subsections will shed light upon all the metrics of performance, accompanied by visualization. 

BLEU score is a measure to assess the closeness of generated test cases against their human-written 
counterparts in terms of syntactic and semantic quality. Higher BLEU scores imply more alignment with 
reference test cases. The figure compares BLEU scores obtained by different test case generation models, 
stressing the fact that DistilGPT-2 has been able to generate high-quality test cases with less computational 
cost, as shown in Figure 2. 
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Figure 2: BLEU Score Comparison of Test Case Generation Models 

Code coverage assesses how well the generated test cases execute different parts of the program. A higher 
coverage percentage indicates more comprehensive test cases that ensure better software reliability.The 
figure presents the code coverage achieved by different test case generation methods, demonstrating that the 
proposed approach effectively covers more code regions than traditional methods as shown in Figure 3. 

 

Figure 3: Code Coverage Analysis of Generated Test Cases 

The fault detection rate evaluates the ability of the generated test cases to uncover software defects. A higher 
rate signifies that the test cases effectively expose vulnerabilities and improve software robustness.The figure 
compares the fault detection capabilities of various models, highlighting how the proposed lightweight 
approach efficiently detects software bugs with minimal computational overhead as shown in Figure 4. 
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Figure 4: Fault Detection Rate of Test Case Generation Models 

The redundancy ratio identifies duplicate or highly similar test cases. A lower redundancy percentage 
indicates a more efficient test suite, reducing unnecessary executions.The figure showcases the redundancy 
ratio for different test case generation models, demonstrating that our approach generates more diverse and 
unique test cases as displayed in Figure 5. 

 

Figure 5: Test Case Redundancy Ratio Across Models 

Comparative studies made between the Advanced Genetic Algorithms and the Proposed Method in terms of 
test coverage, efficiency, testing reliability, and computational overhead. From the findings, it became clear 
that the proposed method obtains better test coverage (95% over 90%), showing better exploration of the 
software under test. Efficiency improves as well, going from 85% to 90%, and testing reliability improves 
from 95% to 98%, providing stronger test scenarios. Computational overhead given in Table 1 are 70% and 
60%, for the former and the latter, respectively. Our method gains further advantage in computational cost by 
lowering it down to 60%. 

Table 1: Performance Comparison with ADA 

Metric Advanced Genetic Algorithms Proposed Method 
Test Coverage (%) 90 95 

Efficiency (%) 85 90 
Testing Reliability (%) 95 98 

Computational Overhead (%) 70 60 
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6. Conclusion and Future Works 

This investigation demonstrates the scope of the proposed lightweight deep learning technique toward test 
case generation in software testing. The results disclose that the proposed method can achieve higher 
coverage of testing, which is 95%, improved efficiency of 90%, and testing reliability at 98%, unlike 
classical genetic algorithm-based methods. Hence, the approach is more scalable because the computational 
overhead has also been reduced by 40%. The creation of test cases has become more reliable and efficient 
now while being minimally demanding on computing resources. Our future works are focusing on hybrid 
lightweight models incorporating transformer-based architectures to further improve training generation 
quality while keeping overhead low. 
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