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Abstract-The very critical phase in SDLC is software testing, where application reliability, security, and
efficiency are ensured. However, increasing complexity in software has made traditional test case
prioritization (TCP) methods difficult, with regards to high execution time and computational overhead. The
existing approaches such as Genetic Algorithms (GA) are highly computationally expensive, and the
adaptability of test cases with new evolvement cannot really be integrated with the processes. This study
proposes an artificial intelligence-based approach with DistilIRoBERTa for test case prioritization to improve
fault detection and optimized test execution. Unlike traditional methods, DistilROBERT a uses deep learning
to analyze semantic and historical defect data of the test cases to intelligently prioritize. The proposed
method achieves 93% test case coverage (against 90% in GA), 90% execution efficiency (against 85%), and
96% reliability (against 95%) while significantly reducing computational overhead to 53% (against 70%).
All these aspects, therefore, make the results much more scalable, efficient, and adaptable as compared to
software testing. An edge over competitive heuristic-based TCP methods is that the proposed model offers
faster execution coupled with minimal resource consumption—the perfect environment for extensive testing.
Management of test cases proves to be one of the important tasks since there are a large number of test cases
in software. This paper develops an automated Intelligent test case prioritization process. A centralized
intellectual resource is established through the complete understanding of test cases, their interdependencies,
requirement analysis, defect analysis, and processing of information for prioritization. The application of the
resulting development would open new horizons to the evolution of intelligent testing.
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1. Introduction

Software testing constitutes a fundamental and indispensable phase within the software development
lifecycle (SDLC), serving the essential purpose of ensuring that software applications operate correctly,
efficiently, and securely before they are deployed for end users [1]. This phase is crucial in detecting
software defects at the earliest stages of development, which directly contributes to improving overall
software quality, enhancing user satisfaction, and significantly reducing long-term maintenance and
operational costs [2] [3]. Early identification and resolution of defects help prevent critical failures such as
system crashes, security breaches, and performance degradations that can compromise user trust and cause
substantial financial and reputational damage [4]. Consequently, rigorous software testing is a cornerstone in
delivering reliable, stable, and robust software systems that meet both functional and non-functional
requirements [5].With the escalating complexity of modern software applications—characterized by rapidly
growing codebases, frequent and accelerated release cycles, and a wide variety of user interactions and
deployment environments—the traditional software testing process faces formidable challenges [6] [7]. The
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conventional approach of exhaustive test execution, which involves running all possible test cases and
scenarios, has become impractical and unsustainable due to the exponential increase in testing scope and
depth [8]. Limitations in available testing time, computational resources, and associated costs impose strict
constraints on the feasibility of running comprehensive test suites for every software iteration [9]. This
growing resource demand makes it impossible to guarantee thorough testing coverage without compromising
project schedules or inflating budgets [10].

To address these constraints, there is a critical need for intelligent and efficient test management strategies
that can optimize the testing process by focusing resources on the most impactful tests [11]. Test Case
Prioritization (TCP) has emerged as an effective solution to this problem [12]. TCP techniques reorder the
sequence of test case execution based on their estimated importance or fault-detection potential, ensuring that
test cases most likely to reveal defects are executed earlier in the testing cycle [13]. This reordering
accelerates fault detection, reduces the feedback loop for developers, and facilitates timely corrective actions
[14]. By prioritizing high-impact test cases, TCP not only improves testing effectiveness but also minimizes
resource consumption and testing time, thereby supporting faster release cycles and continuous integration
and continuous deployment (CI/CD) pipelines that are critical for modern agile development practices [15]
[16].In recent years, advances in Natural Language Processing (NLP) have had a transformative impact on
software testing methodologies [17]. Since many software artifacts—such as test case descriptions, bug
reports, and requirements documentation—are expressed in natural language, NLP offers powerful
capabilities for automatically analyzing and understanding these textual resources [18]. Leveraging NLP
models, software engineers can extract rich semantic and contextual information from test case descriptions,
enabling enhanced categorization, clustering, and prioritization of tests based on their content and intent [19].
This semantic understanding allows the identification of test cases that target critical functionality or
complex features, supporting more focused and effective testing efforts [20] [21].

Furthermore, NLP-based approaches enable the mining of historical bug reports and defect data to uncover
patterns and characteristics associated with defect-prone software modules [22]. By analyzing these patterns,
it becomes possible to predict areas of the software that are more likely to contain faults, guiding the
prioritization and allocation of testing resources to high-risk components [23]. Additionally, NLP techniques
can identify redundancies and similarities among test cases, thereby reducing the execution of duplicate or
low-value tests and optimizing the overall testing process [24] [25]. The integration of deep learning models
with NLP further advances automation capabilities by enabling adaptive, data-driven test case selection and
prioritization strategies that continuously learn from evolving software artifacts and testing outcomes,
ultimately enhancing the efficiency and effectiveness of software testing [26].Transformer-based models
have significantly advanced the field of NLP by enabling deeper and more nuanced understanding of text
through mechanisms such as self-attention, which captures complex dependencies across entire sequences of
text [27]. Notably, models like BERT (Bidirectional Encoder Representations from Transformers) and
RoBERTa (Robustly Optimized BERT Pretraining Approach) have demonstrated remarkable success in a
wide range of natural language understanding tasks due to their ability to grasp contextual relationships and
subtle semantic nuances [28] [29]. These models are particularly well-suited for software testing applications
where comprehending the precise meaning of test case descriptions, bug reports, and requirements
documents is essential for accurate test case analysis and prioritization [30]. By leveraging their advanced
contextual comprehension, transformer-based models can improve the identification of relevant test cases
and defect-prone areas, thereby enhancing the accuracy and reliability of TCP methodologies [31] [32].

This study proposes a test case prioritization method using DistilIROBERTa, a lightweight variant of
RoBERTa that balances computational efficiency and accuracy, making it suitable for continuous integration
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and large-scale testing. By capturing semantic relationships between test cases and historical defect data, it
enables more precise prioritization while significantly reducing computational costs. The model also
generalizes well across different software projects with minimal retraining, ensuring scalability. This
approach aims to speed up fault detection, reduce testing effort, and improve software reliability, ultimately
supporting faster releases and higher-quality software delivery.

Primary Contributions

Create an NLP-driven test case prioritization model with DistilROBERTa to enhance fault detection
and minimize computational overhead in large-scale software testing.
Integrate a self-supervised learning process that automatically adjusts to large test histories,
improving prioritization accuracy without human intervention.

(1 Maximize test selection efficiency by taking advantage of DistilRoBERTa's processing power,
prioritizing high-priority test cases first while ensuring computational efficiency.

[1 Develop a scalable and flexible TCP framework that can support multiple data sources, such as
historical defects and test case descriptions, to increase software reliability and testing efficiency.

2. Related works

Shao et al. conducted an experimental study on fault injection in Amazon Web Services (AWS)
environments to improve system resilience and robustness against failures [33]. Utilizing AWS-native tools
such as CloudWatch for monitoring, X-Ray for tracing, and Fault Injection Simulator (FIS) for controlled
fault introduction, their approach simulated a variety of failure scenarios including network latency, CPU
and memory overload, and instance shutdowns [34]. The experiments revealed that under induced network
delays, system latency increased by approximately 10%, while resource utilization remained stable, and
auto-scaling mechanisms effectively responded to the simulated stress [35]. Although their results
demonstrated improved fault tolerance and system adaptability, the study did not extend to analyze the long-
term impact on operational costs or sustained performance degradation, leaving an important area
unexplored regarding the economic and performance trade-offs of fault injection in cloud environments [36].

Wen et al. proposed a hybrid model combining MobileNet and TinyBERT architectures for effective test
case prioritization (TCP) in software testing [37]. In their approach, TinyBERT—a compact transformer-
based language model—was employed to analyze textual information from test case descriptions, while
MobileNetV3, a lightweight convolutional neural network optimized for mobile and embedded devices, was
used to analyze control flow information from the codebase [38]. This dual-model strategy aimed to leverage
both semantic text understanding and programmatic behavior to improve prioritization [39]. Their
experimental results showcased a high-test coverage of 95%, execution efficiency of 92%, and an impressive
97% accuracy in defect detection [40]. Additionally, their method reduced computational costs by 55%
compared to the Adaptive Genetic Algorithm (AGA) benchmark [41]. While the approach significantly
enhanced both speed and accuracy in test prioritization, it did not incorporate self-supervised learning
techniques, which could further improve the model’s ability to predict defects under changing or dynamic
software conditions, representing a potential direction for future work [42].

Deng et al. explored the use of high-level genetic algorithms (GAs) integrated with other swarm intelligence
and metaheuristic techniques such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),
and adaptive hybrid methods to improve software testing processes [43]. Their combined optimization
strategy was designed to enhance test efficiency and maximize test coverage, especially within parallel
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computing environments and big data scenarios [44. The reported results demonstrated considerable
performance improvements, including faster convergence rates and higher fault detection rates, when
compared to conventional methods [45]. However, the study did not delve into the computational costs and
overhead associated with making real-time adjustments during testing, which could affect practical
deployment, especially in resource-constrained or time-sensitive environments [46].

Tabernik et al. investigated the application of neural networks alongside heuristic algorithms for test case
prioritization, particularly targeting regression testing tasks in large-scale software systems [47]. Their
approach sought to maximize fault detection effectiveness and optimize resource utilization by learning from
historical test results and dynamically adjusting the prioritization order [48]. The results indicated that their
method outperformed traditional TCP techniques in terms of efficiency and fault detection rate [49].
Nevertheless, the study did not adequately address scalability concerns when dealing with extremely large
codebases or highly complex software systems, a limitation that may impact the method’s applicability in
industrial-scale projects [50].

Yan and Jia introduced a probabilistic model checking framework to optimize cloud deployment strategies
by leveraging formal verification techniques, specifically Probabilistic Computation Tree Logic (PCTL) and
Markov Decision Processes (MDP) [51]. Their model ranked deployment configurations based on reliability
and performance metrics, providing a systematic approach to evaluate and select optimal cloud deployment
options[52]. Experimental validation revealed an accuracy of 92.5% in the selection phase and 98% during
verification, indicating the method’s precision in predicting deployment outcomes [53]. Despite these
promising results, the approach did not account for the significant computational overhead inherent in real-
time verification processes, which could limit its scalability and responsiveness in dynamic cloud
environments [54].

Zhao et al. focused on cloud storage security by developing a comprehensive framework encompassing
encryption mechanisms, fine-grained access control, and data integrity verification [55]. Their multi-layered
security approach was designed to protect stored data against unauthorized access and tampering while
maintaining efficient resource utilization [56] [57]. Evaluation of their system demonstrated enhanced data
longevity and robustness against cyber threats, highlighting the effectiveness of the integrated security
measures [58]. However, the research did not explore the potential impact of these security layers on overall
cloud system performance, leaving open questions about latency, throughput, and scalability trade-offs in
secure cloud storage solutions [59].

Poovendran proposed a hybrid strategy combining artificial intelligence, electronic health records (EHRS),
and network analysis techniques for improved cardiovascular disease management [60]. Their model
leveraged Al algorithms to analyze heterogeneous patient data from EHRs and employed network-based
analytics to identify early signs and risk factors of cardiovascular conditions [61]. This integrated approach
achieved an early detection accuracy of 94% and operational efficiency of 91%, demonstrating substantial
improvements over traditional diagnostic methods [62]. While the results were promising in enhancing
predictive analytics and clinical decision support, the study did not address the challenges associated with
integrating diverse and often heterogeneous data sources, a critical factor in real-world healthcare
applications [63].

Zhou et al. developed a hybrid classification model combining Particle Swarm Optimization (PSO) with
Quadratic Discriminant Analysis (QDA) to improve classification efficiency and accuracy in Al systems
handling high-dimensional data [64]. PSO was used to optimize QDA parameters, enabling the classifier to
perform more effectively in complex feature spaces [65]. Their experiments achieved an accuracy of 92%
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and an 89% reduction in classification errors during optimization [66]. However, the study did not evaluate
the computational complexity and scalability of this hybrid model when deployed on large-scale datasets or
real-time systems, aspects that are essential for practical implementation [67].

Shao et al. introduced a hybrid Al framework integrating Asynchronous Advantage Actor-Critic (A3C),
Trust Region Policy Optimization (TRPO), and Partially Observable Markov Decision Processes (POMDPSs)
to enable more efficient and robust decision-making in uncertain environments [68]. This approach improved
learning speed, stability, and flexibility by combining reinforcement learning techniques with probabilistic
modeling of uncertainty [69]. The framework demonstrated a 92% improvement in efficiency and an 89%
reduction in decision-making errors. Nevertheless, the study did not consider the substantial computational
resources required to integrate and run these sophisticated methods concurrently, potentially limiting its
deployment in environments with constrained hardware [70].

Finally, Deevi developed a deep learning-based test case prioritization model tailored for continuous
integration testing [71]. By utilizing historical test execution data, Deep Order intelligently reordered test
cases to enhance fault detection efficiency. Experimental evaluations showed that Deep Order outperformed
several industry-standard prioritization techniques in both speed and accuracy [72]. However, the approach
did not fully address the computational overhead associated with managing and processing extensive test
history data, which could impact its scalability and response time in very large or fast-evolving software
projects [73].

The literature reviewed identifies a number of limitations from various studies. Numerous methods did not
consider the long-term computational expense of fault injection and cloud deployment optimization. Other
studies enhanced test efficiency and accuracy without considering self-supervised learning and
computational overhead in managing large test histories. Likewise, studies proved improvement in
performance through Al and genetic algorithm application but ignored real-time computational costs of
adaptive methods. Although some research provided safe cloud storage, they did not test its effect on system
performance. Some other papers struggled to scale models to extremely large codebases and combine
different data sources. These limitations imply that future studies should have more comprehensive
assessments including cost, scalability, and computational efficiency.

3. Problem Statement

Previous research has explored fault injection techniques in cloud environments such as AWS to enhance
system resilience. However, these studies have not thoroughly examined the long-term computational
overhead or the sustained impact on system performance, leaving gaps in understanding the cost-
effectiveness and efficiency of such fault injection strategies over extended periods [74]. Similarly, some test
case prioritization models based on deep learning have demonstrated promising improvements in fault
detection by leveraging historical test execution data. Yet, they often overlook the significant computational
costs associated with managing and processing large volumes of test histories, which can hinder scalability
and responsiveness in fast-paced development environments [75]. Additionally, approaches that employ
neural networks and heuristic methods to improve regression testing efficiency have shown gains in fault
detection but frequently fail to address the scalability challenges posed by very large and complex codebases,
limiting their applicability in industrial-scale software projects [76].To address these constraints, the
suggested approach utilizes DistilIRoBERTa for computationally effective test prioritization, incorporates
self-supervised learning to handle extensive test histories, and is scalable by using varied data sources,
optimizing fault detection as well as resource usage.
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4. Proposed Methodology
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Figure 1: Holistic Methodology for Test Case Prioritization

The Holistic Methodology for Test Case Prioritization is a systematic procedure that intends to improve the
fault-detecting capability of software by ordering and executing the test cases in a more worthy sequence.

4.1. Data collection

The Test-Case Dataset and methods2testdatasets are derived from public repositories like Kaggle and
GitHub, having various software projects with related test cases, execution histories, and defect reports. The
datasets include raw source code, from which Control Flow Graphs (CFGs) are derived to examine structural
dependencies. Test case descriptions are coupled with execution results to determine fault-prone locations,
whereas defect labels are acquired from bug-tracking repositories to label test cases as high, low, or average
in terms of historical fault detection capacity. Such formatted data is then used to construct an intelligent test
case prioritization model through the application of DistilRoOBERTa, considering both semantic and
execution-driven understanding.

4.2. Data Preprocessing

4.2.1. Test Case Cleaning & Standardization

The descriptions of test cases are tokenized and cleaned through the use of the DistilRoBERTa tokenizer,
mapping them into numerical embeddings. Defect labels are determined by past fault detection effectiveness,
creating a prioritization score S for a test case as shown in Equation (1):

Sf:a'l_;i"*'g';‘f' )

where F; is the priority score, F is frequency of past failure, 5; is defect severity, and o, are weighting
factors.
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4.2.2.Tokenization & Embedding Generation (DistiiRoOBERTa)

Descriptions of test cases are tokenized with the DistilRoOBERTa tokenizer, transforming text data into
numerical form. The tokens are then converted into ranking embeddings depending on their semantic
similarity and historical association with defects as shown in Equation (2):

A e
it =)

in which E; denotes the embedding vector, and T; is the tokenized description of the test case.

Positional
Encoding Encoder X 6

Feed Add
Forward Noi
! Concat

Figure 2:Architecture of DistilRoBERTa

DistilRoBERTa is the thinner and speedier variant of ROBERTa (Robustly Optimized BERT Pretraining
Approach). It aims to retain most of ROBERTa's performance while making it computationally efficient.

4.2.3. Label Extraction for Prioritization

Test cases are correlated with bug-tracking system defect reports, and priority scores are determined
according to historical fault detection effectiveness. Increased failure frequency and defect severity raise the
priority of a test case as shown in Equation (3):

B=y-E+8-5; ®)
wheres; is priority score, F; is fault detection frequency, L; is defect severity, and «. 8 are weighting factors.

4.3. Test Case Prioritization Strategy

After tokenization, embedding, and priority score assignment to the test cases, the subsequent step is to
formulate a good prioritization strategy for deciding their order of execution. The aim is to achieve high fault
detection efficiency with low execution time and redundancy.
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4.3.1. Similarity-Based Ranking

Because there might be overlapping functionality in some test cases, semantic similarity is calculated
between test case embeddings to detect redundant or very similar cases. The similarity score is determined
through cosine similarity as shown in Equation (4):

: E{Ej

Sim(E;. E;) = Izl

(4)
in which E;and E; represent test cases i and j embeddings, respectively.

If Sim is high (approaching 1), one of the test cases can be relegated or combined.
If Sim is low, then both test cases are distinct and must be run individually.

4.3.2. Fault-Based Ordering

Every test case also has a priority score £, which is its past fault detection efficiency. The test cases are
sorted in descending order by £, where as shown in Equation (5):

P =y-F+5-5; (5)

Where, P,= priority score of test case I, F,= past failure frequency of test case I,5= severity of defects
detected, y. & = weighting factors

A greater?: value indicates that the test case has a better chance of identifying faults and ought to be run
earlier in the test cycle.

4.3.3. Final Test Case Ranking

Final rank is established based on the merging of fault-ordering and similarity-based adjustment with the
purpose to maximize test runs. The rank of the test cases is measured by a weighted score as shown in
Equation (6):

R; = AP, — pX;.; Sin(E;,E;) (6)

whereR; is final rank score, F; is priority score, Sim(L-',-.Lj.-) is similarity among other test cases, and o, are
weighting parameters. The priority-tested test suite is then delivered for effective fault finding.

4.4. Evaluation
4.4.1. Test Case Coverage (%)

Test Case Coverage (TCC) is used to determine how effectively the priority test cases are covering the
software under test's execution paths, as shown in Equation (7).

Coverage = (:—) x 100 @)
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4.4.2. Execution Efficiency Improvement (%)

Execution Efficiency Improvement (EEI) calculates the decrease in test execution time when executing a
prioritized test suite versus a baseline method (e.g., random ordering or exhaustive execution), as shown in
Equation (8).

Tp—Tp'

Efficiency = (

) x 100 ®)

Ty /

4.4.3. Defect Detection Rate (%)

Defect Detection Rate (DDR%) evaluates how well a test case prioritization technique performs in detecting
faults early, as shown in Equation (9).

Dy
Detection Rate = (I) » 100 9)

4.4.4. Prioritization Accuracy (%)

Prioritization Accuracy (PA%) is used to evaluate how close the test case prioritization strategy is in ranking
high-risk test cases to an optimal ranking (i.e., a best-possible ranking in terms of historical fault detection),
as shown in Equation (10).

Accuracy = (%) x 100 (10)

4.4.5. Computational Cost Reduction (%)

Computational Cost Reduction (CCR%) indicates the extent to which the new test case prioritization
technique lowers processing time, memory, or system resources against conventional methods, as shown in
Equation(11).

5. Result

The results of the proposed DistilRoOBERTa-based test case prioritization method are presented in this
section. The evaluation was conducted using the Software Defect Prediction and methods2test datasets,
comparing the effectiveness of the approach against traditional prioritization techniques. The findings
demonstrate that the proposed method enhances fault detection, reduces test execution time, and improves
computational efficiency, making it a viable solution for optimizing software testing.

5.1.Test Case Coverage

Test case coverage indicates the degree to which the prioritized test cases traverse various execution paths
within the software. As coverage increases, more program logic is executed, and chances of undetected faults
decreaseas shown in Figure 3.
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Figure 3: Test case coverage comparison

This graph compares the test case coverage obtained using the proposed approach with that using
conventional priority functions.

5.2. Execution Efficiency Improvement

Execution efficiency measures decrease in the test execution time, prioritizing the execution of critical test
cases at the earliest possible time to minimize delays in the software testing lifecycle as shown in Figure 4.

Test Execution Time Reduction

N w B w
o S =) o

-
o

Efficiency Improvement (%)

Tgadi[ional Proposed

Figure 4: Test Execution Time Reduction

This figure shows the reduced percentage of execution time achieved through DistilRoBERTa-based prioritization as
compared to baseline approaches.

5.3. Computational Cost Reduction

The measure reveals efficiency for proposed methods in terms of computation overhead which includes CPU
time, memory consumption, and resource usage. Less computational costs allow scalability and viability in
testing conditions of large scales. The computations in use by the proposed model compared to the baselines
document in Figure 5.
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Figure 5: Computation Cost Reduction Comparison

When testing case prioritization, the Advanced Genetic Algorithm (GA)[3]outperforms the proposed
DistillRoberta-based method as shown in Table 1. The proposed method says that it will achieve 93% higher
test case coverage, 90% better execution efficiency, and 96% better testing reliability while significantly
reducing computational cost (53%). Hence, it is more efficient and effective.

Table 1: Performance Comparison of the proposed method

Metric Advanced GA [3] Proposed Method

(DistilRoBER Ta)

Test Case Coverage (%) 90% 93%
Execution Efficiency (%) 85% 90%
Testing Reliability (%) 95% 96%
Computational Overhead (%) 70% 53%

6. Conclusion and Future Works

The employ of DistilROBERTa-based test case prioritization has significantly advanced the efficiency aspect
of software testing. It scored noticed achievements in comparison with Advanced Genetic Algorithm (GA),
achieving 93% test case coverage (versus 90%), 90% execution efficiency (versus 85%), and 96% reliability
in testing (versus 95%), while further burdening the computation at about 53% instead of 70%. These
improvements successfully present a known version of the fault detector that it is easily reducible into the
execution time and computational resource cost. Future work should target the integration of deep learning
with heuristic optimization techniques for enhancing adaptability and further improvement in test case
prioritization across the different software domains.
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